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(CM1) A particle of mass m moves without friction in the plane (polar co-
ordinates r,ϕ) under the influence of a central potential V (r).

(a) Find the Euler-Lagrange equations of motion for coordinates r and ϕ,
subject to the unknown central potential V (r). Indicate all conserved
quantities in this problem.

(b) From time t = 0, with initial conditions r = a, ϕ = 0, and ∂ϕ
∂t

= ω, the
particle’s trajectory is observed to follow a logarithmic spiral,

r = a e−γϕ,

where γ is a constant. Use these facts to infer the potential V (r).
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Solution:

(a) The Lagrangian is

L = T − V =
1

2
m

(
ṙ2 + r2ϕ̇2

)
− V (r).

The Euler-Lagrange equations have the form

d

dt

(
∂L
∂q̇

)
=
∂L
∂q

where q is either r or ϕ. The equations of motion are therefore

mr̈ = mrϕ̇2 − dV

dr
; (i)

d

dt

(
mr2ϕ̇

)
= 0. (ii)

The conserved quantities are the two integrals of motion: one is due to
cyclic variable ϕ that gives conservation of angular momentum

L = pϕ = mr2ϕ̇

and the second one is the total energy, Hamiltonain

E = ṙpr + ϕ̇pϕ − L =
1

2
m

(
ṙ2 + r2ϕ̇2

)
+ V (r)

(b) We wish to put equation (i) in terms of just V and r, so that we can
find the potential. The initial condition gives us the means to replace
ϕ̇ with known quantities:

L = mr2ϕ̇ = ma2ω. (iii)

Differentiating the log spiral with respect to time,

ṙ = −γϕ̇r = −γa2ωr−1.

The second derivative yields our last missing piece,

r̈ = −γ2a4ω2r−3. (iv)
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Using (iii) and (iv), equation (i) becomes:

dV

dr
=

(
1 + γ2

) mω2a4

r3
.

Integrating and setting the arbitrary constant to zero,

V (r) = −
(
1 + γ2

) mω2a4

2r2
.

The same result follows from energy conservation:

V (r) = E− 1

2
m

(
ṙ2 + r2ϕ̇2

)
= E−m(γ2 + 1)r2ϕ̇2

2
= E−(1+γ2)

ma4ω2

2r2

where we first used the spiral nature of the trajectory ṙ = −γrϕ̇, and
then related ϕ̇ to conserved angular momentum ϕ̇ = L/mr2 = a2ω/r2.
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(CM2) A uniform circular disk of radius R can rotate about the axis per-
pendicular to the disk’s plane and going through its center, with the moment
of inertia about this axis being I. A rigid, massless rod of length d is attached
to disk’s circumference, with a mass particle m at its end. The pendulum
can swing left-right around its suspension point.

At time t = 0 the disk is rotated such that pendulum attachment point is at
angle α0, and pendulum itself is vertical, and everything is motionless. Find
the rotation angle of the disk α(t) after the system is let go.

Use the following ratios to get good numbers,

d

R
= 2 ,

I

mR2
= 2

and assume small amplitudes of the motion (as soon as possible in your
solution to simplify algebra).

α0

I

R

g

d

m

Solution:
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I

R

g

α

m

d
β

y

x

Introduce the angle coordinates α, β as shown in the figure, and the Carte-
sian coordinates of the point mass m are

x = R sinα + d sin β

y = R cosα + d cos β

The Lagrangian is

L =
Iα̇2

2
+
m

2
(ẋ2 + ẏ2) +mgy (1)

For small angles we keep only linear terms in velocities

ẋ = Rα̇ cosα + dβ̇ cos β ≈ Rα̇ + dβ̇

ẏ = −Rα̇ sinα− dβ̇ sin β ≈ 0

that gives approximate Lagrangian, to order O(α2, β2),

L =
Iα̇2

2
+
m

2
(R2α̇2 + d2β̇2 + 2Rdα̇β̇)− mg

2
(Rα2 + dβ2) (2)

and equations of motion

(I +mR2)α̈ +mRdβ̈ = −mgRα
mRdα̈ +md2β̈ = −mgdβ
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Denote
ω2
0 =

g

R

and re-write EoM as a matrix equation, dividing througout by mR2:(
I

mR2 + 1
) d2
dt2

+ g
R

d
R

d2

dt2
d2

dt2
d
R

d2

dt2
+ g

R

(
α
β

)
= 0 (3)

that with the given ratios and assumption of harmonic oscillations (α, β) =
(A,B)e−iωt become(

−3ω2 + ω2
0 −2ω2

−ω2 −2ω2 + ω2
0

)(
A
B

)
= 0 (4)

A non-trivial solution exists if

(3ω2 − ω2
0)(2ω

2 − ω2
0)− 2ω4 = 0 ⇒ 4ω4 − 5ω2ω2

0 + ω4
0 = 0

that results in eigenvalues and eigenvectors

ω2
1 = ω2

0

(
A
B

)
1

=

(
1
−1

)
ω2
2 =

1

4
ω2
0

(
A
B

)
2

=

(
1
1/2

)
(5)

The solution that satisfies the initial conditions of zero velocities will be
proportional to cos functions,(

α
β

)
= C1

(
1
−1

)
cosω1t+ C2

(
1
1/2

)
cosω2t (6)

The remaining coefficients determined from initial conditions

C1 + C2 = α0 C1 − C2/2 = 0 ⇒ C1 =
1

3
α0 C2 =

2

3
α0

with the final answer

α(t) = α0
1

3
cosω0t+ α0

2

3
cos

ω0t

2
(7)
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(CM3) A chain of length L and total mass M is released from rest with its
lower end just barely touching the top of a table. Find the total force exerted
by the table on the chain after it has fallen through a distance y. Assume
that each link instantly comes to rest as it reaches the table, i.e. collisions
of links with the table are completely inelastic, and treat the chain’s mass as
uniformly distributed along its length.

L

L-y

y

Solution:
By the third law, the force that the table exerts on the chain is equal to the
force the chain exerts on the table. We know that the amount of chain laying
on the table after a length y has fallen has a weight Fs = (M/L)gy (subscript
denotes stationary), but we also need to know the force the table exerts on
the chain to stop it as it falls, call this Fm (subscript denotes moving). Fm =(
dp
dt

)
=

(
dp
dy

) (
dy
dt

)
. This can be written as Fm = v

(
dm
dy

) (
dy
dt

)
= v2M

L
. From

kinematics, we know that the speed of the chain is given by v2 = 2gy, so
Fm = 2gyM

L
, for the moving chain being brought to rest. Thus, the total

force the table exerts on the chain at any instant is Ftot = Fs + Fm = 3gyM
L
.

Another way of looking at the solution might also be helpful, because it
directly connects to the kinetic theory of gases. The links of chain can be
thought of as particles continuously flowing one after another and hitting
the table. The force they are exerting on the table is given by how much
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momentum the table absorbes in unit time. Assuming that ρ = M/L is
density of the chain, the absorbed momentum is equal to the momentum of
the chain part of length dl = vdt hitting the table during time dt:

dp = dmv = ρdl v = ρv2dt ⇒ Fm =
dp

dt
= ρv2 =

M

L
v2

and v2 = 2gy - velocity of the links falling through height y.
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Spherical Harmonics Yℓ,m(θ, ϕ)

Orthonormality of spherical harmonics∫ 2π

0

dϕ

∫ π

0

sin θdθ Y ∗
ℓ,m(θ, ϕ)Yℓ′,m′(θ, ϕ) = δℓℓ′δmm′

First several spherical harmonics explicitly

Y0,0 =

√
1

4π

Y1,0 =

√
3

4π
cos θ , Y1,±1 = ∓

√
3

8π
e±iϕ sin θ

Y2,0 =

√
5

16π
(3 cos2 θ − 1) , Y2,±1 = ∓

√
15

8π
e±iϕ sin θ cos θ , Y2,±2 = ∓

√
15

32π
e±i2ϕ sin2 θ

Spherical Bessel functions jν(x), yν(x)

They are solution to the equation

f ′′(x) +
2

x
f ′(x) +

(
1− ν(ν + 1)

x2

)
f(x) = 0

First few spherical functions of
first and second kind:

j0(x) =
sinx

x

j1(x) =
sinx

x2
− cosx

x

j2(x) =

(
3

x3
− 1

x

)
sinx− 3

x2
cosx

y0(x) = −cosx

x

y1(x) = −cosx

x2
− sinx

x

y2(x) = −
(

3

x3
− 1

x

)
cosx− 3

x2
sinx
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The first few zeros of the spherical Bessel functions of the first kind:
jν(zνk) = 0

k = 1 k = 2 k = 3 k = 4
ν = 0 3.142 6.283 9.425 12.566
ν = 1 4.493 7.725 10.904 14.066
ν = 2 5.763 9.095 12.323 15.515

Orthogonality of spherical Bessel functions:∫ 1

0

x2dx jν(zνnx)jν(zνmx) = δnm
1

2
jν+1(zνn)

2
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(QM1) A particle with mass m is in a one dimensional potential, V (x). The
spatial dependence of the ground state wave function is:

ψ0(x) = Ae−k|x|

(a) Determine the normalization constant, A.

(b) Find the potential, V (x). Confirm that the potential has the correct
units.

(c) Calculate the probability that the particle is within a distance d of the
origin and determine how this probability changes if you consider the
ground state of a particle in the same potential, but with half of the
mass.

Solution:
(a) Use the normalization condition to determin A:

1 =

∫ ∞

−∞
|ψ0(x)|2dx

= 2

∫ ∞

0

|A|2e−2kxdx

= 2|A|2
[
e−2kx

−2k

]∞
0

=
|A|2

k

Solving for A:

A =
√
k

The dimensions of k are inverse distance, so the units of A are correct for a
1D wave function.

(b) The given wave function is the ground state to attractive dirac delta
potential. To show this, start by noting that there is a discontinuity in the
first derivative of ψ0(x) at x = 0:

dψ0

dx
=

{
Akekx x < 0

−Ake−kx x > 0
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The relationship between this discontinuity at the potential is determined by
the Schödinger equation by solving for d2ψ/dx2, integrating both sides in the
range of (−ϵ,+ϵ), and finally taking the limit as ϵ→ 0:

d2ψ0

dx2
=

2m

ℏ2
ψ0(V − E)∫ ϵ

−ϵ

d2ψ0

dx2
dx =

2m

ℏ2

∫ ϵ

−ϵ

(ψ0V − Eψ0)dx

lim
ϵ→0

(
dψ0

dx

∣∣∣∣
ϵ

− dψ0

dx

∣∣∣∣
−ϵ

)
=

2m

ℏ2
lim
ϵ→0

(∫ ϵ

−ϵ

ψ0V dx− E

∫ ϵ

−ϵ

ψ0dx

)

The expression on the left-hand side is the discontinuity in the first derivative
of ψ0. On the right-hand side, the second term evaluates to 0 because E is a
scalar constant (the energy of the state) and ψ0(x) is continuous.

Evaluation of the discontinuity of dψ0/dx at x = 0 yields:

−2Ak =
2m

ℏ2
lim
ϵ→0

∫ ϵ

−ϵ

ψ0V dx

The only way for the right-hand side of the equation above to be non-zero is
if V (x) = αδ(x) where α is a constant and δ(x) is the dirac-delta function.
Using this form of V (x) yields:

−2Ak =
2m

ℏ2
αψ0(0)

=
2m

ℏ2
αA

Solving for α yields:

α = −ℏ2

m
k

So, the potential is:

V (x) = −ℏ2

m
kδ(x)
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Checking the units, ℏ has the units of angular momentum, so:

[ℏ2] =
m4kg2

s2

And k has the units of inverse distance:

[k] =
1

m

So, the units of alpha are:

[α] =
m4kg2

s2
· 1

kg
· 1

m

=
m2kg

s2
·m

= J ·m

These units are correct. The units of the delta function are 1/m, so, units of
V (x) are energy.

(c) The probability of finding the particle within a distance d of the origin
is:

P =

∫ d

−d

|ψ0(x)|2dx

= 2A2

∫ d

0

e−2kxdx

= 2k

[
e−2kx

−2k

]d
0

= 1− e−2kd

For a given strength of a dirac-delta potential, α, the decay constant for the
wavefunction (for x > 0) is:

k = −m
ℏ2
α

Decreasing the mass will decrease the magnitude of k, cause the wavefunction
to spread out over greater distances from the origin, and thus decrease the
probability of finding the particle in the range (−d, d).
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(QM2) A rotational state of a large molecule with total angular momentum
quantum number j ≫ 1 is represented by

|ψ⟩ = 1√
3
|j,m+ 1⟩+ 1√

3
|j,m⟩+ 1√

3
|j,m− 1⟩

with −j < m < j being the quantum number of z-axis projection of the
angular momentum.

(a) What are the probabilities of different outcomes for measurement of Jz
in this state?

(b) Find the expectation value of measurement Jz in this state, and uncer-
tainty of its measurement.

(c) Using properties of J± = Jx ± iJy operators show that the expectation
value of Jy in this state is zero. Find the expectation value of Jx in this
state, simplify it in the case j ±m≫ 1.

(d) Using previous two steps and the general uncertainty principle, what is
the minimal uncertainty in measuring Jy in this state?

Recall the action of operator J+ on a ket,

J+ |j,m⟩ =
√

(j −m)(j +m+ 1) |j,m+ 1⟩

and use this to find action of J−, if needed.

Solution:
A rotational state

|ψ⟩ = 1√
3
|j,m+ 1⟩+ 1√

3
|j,m⟩+ 1√

3
|j,m− 1⟩

(a) What are the probabilities of different outcomes for measurement of Jz
in this state?

The possible values of Jz are

ℏ(m,m± 1) each with probability
1

3
(1)
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(b) Find the expectation value of measurement Jz in this state, and uncer-
tainty of its measurement.

⟨Jz⟩ = ⟨ψ| Jz |ψ⟩ =
ℏ
3
[(m− 1) +m+ (m+ 1)] = ℏm (2)

∆J2
z = ⟨ψ| J2

z |ψ⟩−⟨ψ| Jz |ψ⟩2 =
ℏ2

3
[(m−1)2+m2+(m+1)2]−(ℏm)2 =

2

3
ℏ2

(3)

(c) Using properties of J± = Jx ± iJy operators show that the expectation
value of Jy in this state is zero. Find the expectation value of Jx in this
state, simplify it in the case j ±m≫ 1

⟨Jy⟩ =
1

2i
⟨ψ| J+−J− |ψ⟩ = 1

2i
(⟨ψ| J+ |ψ⟩−⟨ψ| J+ |ψ⟩∗) = Im ⟨ψ| J+ |ψ⟩

(4)
Since the state is purely real, and the matrix coefficients of J+-operator
are real, the imaginary part of this expression is zero, Im ⟨ψ| J+ |ψ⟩ = 0.

⟨Jx⟩ =
1

2
⟨ψ| J+ + J− |ψ⟩ = 1

2
(⟨ψ| J+ |ψ⟩+ ⟨ψ| J+ |ψ⟩∗) = Re ⟨ψ| J+ |ψ⟩

(5)
The non-zero contributions to this average come from terms

⟨Jx⟩ =
ℏ
3
⟨j,m+ 1| J+ |j,m⟩+ ℏ

3
⟨j,m| J+ |j,m− 1⟩

=
ℏ
3

(√
(j −m)(j +m+ 1) +

√
(j −m+ 1)(j +m)

)
≈ ℏ

2

3

√
j2 −m2

(d) Using previous two steps and the general uncertainty principle, what is
the minimal uncertainty in measuring Jy in this state?

∆Jy∆Jz ≥
1

2
| ⟨[Jy, Jz]⟩ | =

ℏ
2
| ⟨Jx⟩ | (6)

∆Jy ≥
ℏ
2

| ⟨Jx⟩ |
∆Jz

=
ℏ
2

√
2

3

√
j2 −m2 = ℏ

√
j2 −m2

6
(7)
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(QM3) Consider a particle with mass m confined in a 3D spherical infinite
potential well with radius a:

V (r) =

{
0 r < a

∞ otherwise

The system is perturbed by attractive delta potential at (x, y, z) = (0, 0, a/2):

V ′(r⃗) = −αδ(x)δ(y)δ(z − a/2)

where α is a positive constant.

(a) Up to normalization constants, determine the energies, wave functions,
and degeneracies of the ground and first excited states of the unperturbed
system (i.e., when α = 0).

(b) Determine the normalization constant for the unperturbed ground state.

(c) Determine the energy (just the energy!) of the ground state of the per-
turbed system to first order in α. Note: integrals with the delta function are
most easily computed in Cartesian coordinates.

Solution:
(a) The unperturbed system is spherically symmetric, so the 3D time-independent
Schrodinger equation can be solved using separation of variables:

ψ(r⃗) = R(r)Y m
l (θ, ϕ)

where Y m
l (θ, ϕ) are the spherical harmonics, and R(r) is the radial solution.

Outside the well (r > a), R(r) = 0. Inside the well (r < a), R(r) satisfies the
radial equation for a spherically symmetric potential:

d

dr
(r2

dR

dr
) +

2mE

ℏ
r2R = l(l + 1)R

9



By grouping the terms on the left-hand side and expanding the derivatives, it
is evident that this radial equation is the differential equation for the spherical
Bessel (jl(kr)) and Neumann (yl(kr)) functions, where k =

√
2mE/ℏ:

d2R

dr2
+

2

r

dR

dr
+

(
k2 − l(l + 1)

r2

)
R = 0

So, the radial solution is:

R(r) = Ajl(kr) +Byl(kr)

where and A and B are constants.

The next step is to apply the applicable boundary conditions to the radial
solution. First, the spherical Neumann functions diverge at r = 0, making
them nonphysical solutions. So, B = 0.

The solution to the 3D time-independent Schrödinger equation (up to a nor-
malization constant, A):

ψ(r⃗) = Ajl(kr)Y
m
l (θ, ϕ)

Outside of the well (r > a), R(r) = 0 because the potential is infinite. The
wave function must be continuous at r = a, thus, for the solution inside the
well,

Ajl(ka) = 0

From this boundary condition, ka must be equal to a node of the lth spherical
Bessel function. This condition determines the allowed energies. Solving for
E yields:

El,n =
ℏ2

2ma2
z2l,n

where zl,n is the nth node of the lth spherical Bessel function.
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The ground state of the unperturbed system the state that corresponds to
the lowest value of zl,n which is z0,1. The ground state energy then is:

E1 =
ℏ2

2ma2
(z0,1)

2 =
ℏ2

2ma2
(3.142)2

Only one state exists with this energy, so the degeneracy is 1. Up to a
normalization constant, the 3D wave function is:

ψ1(r⃗) = Aj0(
z0,1
a
r)Y 0

0 (θ, ϕ)

The first excited state of the unperturbed system corresponds to the second
lowest value of zl,n which is z1,1. The energy of the first excited state then is:

E2 =
ℏ2

2ma2
(z1,1)

2 =
ℏ2

2ma2
(4.493)2

Three states exist with this energy, so the degeneracy is 3. Up to a normal-
ization constant (B), the 3D wave functions are:

ψ2,−1(r⃗) = Bj1(
z1,1
a
r)Y −1

1 (θ, ϕ)

ψ2,0(r⃗) = Bj1(
z1,1
a
r)Y 0

1 (θ, ϕ)

ψ2,1(r⃗) = Bj1(
z1,1
a
r)Y 1

1 (θ, ϕ)

(b) The normalization condition for the radial part of the wave function is:

1 =

∫ a

0

r2|R(r)|2dr

=

∫ a

0

r2
∣∣∣∣sin( z0,1a r)z0,1

a
r

∣∣∣∣2 dr
Solving for A yields (and noting that z0,1 = π)

A =
π

a3/2
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(c) To estimate the change ground state energy of the system, use perturba-
tion theory.

The ground state is not degenerate, so, the first-order correction to the
energy is the expectation value of the perturbation:

E
(1)
1 = ⟨ψ1,0|V ′(r)|ψ1,0⟩

=

∫
|ψ1(r⃗)|2(−αδ(x)δ(y)δ(z − a/2))d3r⃗

= |ψ1(x = 0, y = 0, z = a/2)|2

= |ψ1(r = a/2, θ = 0, ϕ = 0)|2

= −α π

4a3

∣∣∣j0(z0,1
2

)
∣∣∣2

= −α π

4a3

∣∣∣∣sin(π/2)π/2

∣∣∣∣2
= − α

πa3

So, the energy of the ground state of the perturbed system is:

E1 ≈ E
(0)
1 + E

(1)
1

≈ ℏ2π2

2ma2
− α

πa3
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(EM1) A conductive sphere of radius R is covered with a linear dielectric
material of thickness b and dielectric constant ϵr ≡ ϵ/ϵ0 ≡ 1 + χe, where ϵ is
the electric permittivity and χe is the dielectric susceptibility. The electric
potential V → 0 as r → ∞.

(a) Find the capacitance of the conducting sphere.

(b) Test your result in the limits ϵr → 1 and ϵr → ∞. What is the physical
significance of each?

Solution:

(a) Suppose that the conductive sphere has charge Q. This charge will be
uniformly spread on the conductor because of the spherical symmetry.
Also by spherical symmetry, the electric field will be radial, E = E(r)r̂.
First, let’s solve for the electric displacement, which is also radial and
satisfies∇·D = ρf . The spherical symmetry also ensures that∇×D =
0. Consequently, the polarization of the dielectric has no effect on the
displacement in this situation. Consider a Gaussian surface S of radius
r > R: ∮

S

D · dA = 4πr2D =

∫
ρ dV = Q.

The displacement is therefore the same everywhere outside the conduct-
ing sphere, regardless of the dielectric:

D =
Qr̂

4πr2
.

In linear media of susceptibility ϵ, the displacement is D = ϵE. There-
fore,

E =


Qr̂

4πϵr2
, R < r ≤ R + b;

Qr̂

4πϵ0r2
, R > R + b.
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The electric potential on the conductor is

V =

∫ ∞

R

E · dl

=

∫ R+b

R

Qdr

4πϵr2
+

∫ ∞

R+b

Qdr

4πϵ0r2

=
Q

4π

[
− 1

ϵ(R + b)
+

1

ϵR
+

1

ϵ0(R + b)

]
=

Q

4πϵ0ϵr

[
1

R
+
ϵr − 1

R + b

]
The capacitance is

C =
Q

V
=

4πϵ0ϵr[
1

R
+
ϵr − 1

R + b

]

(b) In the limit ϵr → 1, the dielectric is replaced by vacuum, d becomes
irrelevant, and we have a very simple expression for the capacitance of
a conducting sphere of radius R:

C → 4πϵ0R.

In the limit ϵr → ∞, the dielectric is so easily polarizable that the
electric field within it goes to zero. Hence, it behaves like a conductor.
We then are left with a conducting sphere of radius R+ b, analogous to
the formula above:

C → 4πϵ0(R + b).

3



(EM2) A light of frequency ω from a distant source propagates through
homogeneous interstellar medium with effective dielectric constant

ε̃ = ε(1 + iδ)

where ε, δ are real numbers, δ ≪ 1, and i =
√
−1. Assuming one-dimensional

propagation, find the initial intensity of the light I0 if we measure intensity I
after it traverses distance D. Use provided information to make appropriate
simplifications.

Solution:
The wave equation in a dielectric medium is

∇×E = −1

c

∂B

∂t
, ∇×B =

1

c

∂

∂t
ε̃E ⇒ −∇2E = − ε̃

c2
∂2E

∂t2
(1)

It supports the wave solution

E = E0e
i(kx−ωt) (2)

with the following dispersion relation

k2 =
ω2

c2
ε̃ ⇒ k =

ω

c

√
ε̃ =

ω

c

√
ε(1 + iδ) (3)

Since δ ≪ 1 we can make Taylor expansion of the square root and keep the
first non-trivial dependence on δ:

k = k′ + ik′′ ≈ ω

c

√
ε

(
1 +

iδ

2

)
(4)

where the imaginary part of the wavevector gives the wave dissipation. The
intensity is proportional to the period-averaged energy flux S = c

8π
Re(E×H∗)

with H = c
ω
k× E. For a transverse wave

I = |S| ∝ |E|2 ⇒ I = I0e
−2k′′D (5)

so
I0 = Ieω

√
εδD/c (6)
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(EM3) A circular ring of radius a is placed in the xy plane. Total charge Q
is uniformly distributed along the ring. The ring rotates at constant angular
velocity ω about the z-axis that crosses its center.

(a) Qualitatively sketch the magnetic field everywhere in the xz-plane. Your
sketch should reflect the direction and relative magnitude of the field at a
few locations close to and far from the ring.

(b) Find the magnitude and direction of the field at far distance r ≫ a
on the z-axis and in the xy plane, respectively.

Solution:

The rotating ring makes a magnetic dipole.
(a) Some key features of the finite-size magnetic dipole are:

• Field lines close around the ring of current.

• At z = 0, the field is upward (downward) inside (outside) the ring.

• The field is strongest near the ring, where it is nearly circular and cen-
tered on the ring.

• The field spreads out and decreases rapidly as we move away from the
ring.
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(b) The dipole field in the distance is given by

B⃗dip =
µ0

4π
m
3(m̂ · r̂)r̂ − m̂

r3
,

where the dipole moment is

m⃗ =
1

2

∫
r⃗ × j⃗dτ =

1

2

∫
r⃗ × I⃗dl = Iπa2ẑ = λωaπa2ẑ =

1

2
Qωa2ẑ,

and m̂ = ẑ. On the z axis, r̂ = ẑ, so

B⃗dip =
µ0m

2πr3
ẑ.

In the xy plane, r̂ ⊥ m̂, so

B⃗dip = −µ0m

4πr3
ẑ.
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(ST1) Two thin square plates, a × a, face each other across an evacuated
gap, distance d≪ a. Assume that the surfaces absorb all the radiation that
is incident upon them. The plates are held at temperatures T and T +∆T .

(a) To lowest order in ∆T , find the net power transferred across the gap.

(b) Suppose now that another thin plate, with the same properties, is in-
serted between the first two. Assume that the outer two plates are held
at their original temperatures, and that the system reaches a steady
state. Find the temperature of the inserted plate and the net power
transferred through the system.

(c) If the setup consists of N plates total (including the first two), what is
the net power transferred through the system?

Solution:

(a) Since each sheet absorbs all the light that is incident upon it, it also
emits radiation as a black body. By Stefan’s Law (also called the Stefan-
Boltzmann Law), one side of a plate (area a2) at temperature T emits
power a2σT 4. So the net power through the system is

Pnet = a2σ
[
(T +∆T )4 − T 4

]
= a2σT 4

[(
1 +

∆T

T

)4

− 1

]

= a2σT 4

[(
1 + 4

∆T

T

)
− 1

]
(to first order in ∆T )

= 4a2σT 3∆T.

(b) Let’s call the temperature of the middle plate T + δT . Presumably,
∆T > δT > 0. In steady state, the power transmitted across both gaps
must be the same. This power is

Pnet = Power T → T + δT = Power T + δT → T +∆T

= a2σ [(T + δT )4 − T 4] = a2σ
[
(T +∆T )4 − (T + δT )4

]
= 4a2σT 3δT = 4a2σT 3(∆T − δT ).
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Equivalently, the steady state condition means that radiation received
by the middle plate from the outer plates balances the radiation emitted
by the middle plate. The above condition is satisfied when δT = 1

2
∆T .

The temperature of the middle plate is therefore

Tmiddle = T +
1

2
∆T ,

and
Pnet = 2a2σT 3∆T.

(c) With N plates, there would be N − 1 gaps, each with temperature
difference ∆T/(N − 1), and so the power through the system would be

Pnet =
4a2σT 3∆T

N − 1
.
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(ST2) Two identical monatomic, ideal gases with the same number of par-
ticles N , the same pressure P , but with different temperatures T1 and T2
are in their own vessels with volumes V1 and V2. The vessels are separated
from each other by a valve and the entire system is thermally isolated from
the environment. The valve is suddenly opened. After equilibrium has been
reached:

(a) Determine the final temperature of the system.

(b) Find the change in entropy of the system, expressing your answer in
terms of N , the Boltzmann constant k, and the initial temperatures.

Solution:

(a) Since the system is thermally isolated (no heat exchange), and the gas
is freely mixing (no work done), from applying the first law to the entire
system we get

∆E = ∆Q−W = 0− 0 = 0

– the internal energy of the gas is conserved in this non-equilibrium
process. The internal energy of mono-atomic gas is given by its specific
heat at const volume

E = NcvT where cv =
3
2
k is specific heat per molecule

Using this to compute the initial and final energies give

Ei = E1,i + E2,i = NcvT1 +NcvT2 = Ncv(T1 + T2)

Ef = (2N)cvTf

Since ∆E = Ef −E1 = 0, we can equate these two expressions to obtain

Tf =
T1 + T2

2
(1)

(b) To find the change in entropy between initial and final states, we must
consider the entropy change as each half changes temperature at con-
stant pressure. While the process proposed in the problem involves
mixing at the same time, it is possible to consider a clearer process
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where the two halves first change T at constant pressure without mix-
ing, then the valve is opened and the wall is moved back to its original
position forcing the identical molecules to mix. Because the molecules
are identical, the second step makes no change to the entropy of the sys-
tem, and we can compute the entropy change to each half seperately.
The entropy change is found by integrating the first law

TdS = dE + P dV = NcV dT + PdV =
3

2
NkdT +NkT

dV

V

Integrating this for system 1 yields a change

∆S1 =
3

2
Nk ln

(
Tf
T1

)
+Nk ln

(
Vf,1
V1

)
Making use of the fact that the process proceeds at constant pressure
we can express

Vf,1
V1

=
NkTf/P

NkT1/P
=
Tf
T1

and the change becomes

∆S1 =
5

2
Nk ln

(
Tf
T1

)
The total change is the sum of the parts

∆S = ∆S1 +∆S2 =
5

2
Nk

[
ln

(
Tf
T1

)
+ ln

(
Tf
T2

)]
=

5

2
Nk ln

(
T 2
f

T1T2

)
Introducing eq. (1) gives the full change in the form requested

∆S = 5Nk ln

(
Tf√
T1T2

)
= 5Nk ln

(
T1 + T2

2
√
T1T2

)
(2)

As a quick sanity check, note that the special case T1 = T2 yields ∆S =
0. A bit of algebra shows that ∆S > 0 when T1 ̸= T2.
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(ST3) A liquid of temperature T is kept in a uniform external magnetic field
Bẑ. The liquid is made of identical molecules, each of them having only two
possible values for the component of its magnetic moment along the direction
of the external magnetic field, µz = (1,−1)µ0, µ0 being constant. You may
ignore interactions between molecules.

(a) Find the mean magnetic moment µ̄ of the liquid.

(b) Make a qualitative graph to show the temperature dependence of µ̄.

(c) Derive the approximate expressions for µ̄ at very high temperatures and
very low temperatures.

(d) Find the specific heat CB of the liquid, and discuss the temperature
dependence of CB.

Solution:
(a) The mean magnetic moment is given by

µ̄ =

∑
µze

−−µzB
kT∑

e−
−µzB
kT

= µ0 tanh

(
µ0B

kT

)
.

(b)
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(c) Define η ≡ µ0B/kT . At high temperatures, η ≪ 1; keep only the lead
order term, we get

µ̄ ≈ µ0η ∝ B

T
.

So the mean magnetic moment, and therefore the total magnetic energy of
the liquid, are inversely proportional to T . The higher T , less alignment.

At very low temperatures, η ≫ 1; to zeroth order, µ̄ ≈ µ0. The mean mag-
netic moment is nearly a constant and not sensitive to temperature variation,
because molecules are nearly all lined up with the external field.

(d) The magnetic energy of 1 mole of the liquid is EB = −µ̄NaB. Using the
expression of µ̄ from (a), we get

CB =
∂EB

∂T
= 4kNaη

2 1

(eη + e−η)2
= kNa

η2

cosh2 η
.

For high T , η → 0, so CB ∝ 1/T 2. For low T , η ≫ 1, (1/eη)2 rapidly ap-
proaches zero, so CB → 0. There is a max at η∗ ≈ 1.2.

We can understand the behavior of heat capacity of this two-level system
as follows: at high temperature both levels are equally occupied and the
entropy in the system is already maximal, so heat capacity is small. At
low temperatures, however, only the lowest level is occupied, the entropy
is zero, thermal fluctuations do not change the occupation numbers signifi-
cantly because of the exponentially large factor and this degree of freedom is
”frozen out”. The maximum heat capacity occurs in the intermediate regime.
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