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(CM1) A block of mass m slides with no friction down a ramp of mass M
and height L under the force of gravity. The ramp is attached to the wall by
a spring with spring constant k.

mass m
wall
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o
mass M X

(a) Write the Lagrangian of the system in terms of X, the distance of the
ramp from the wall, and of D, the distance of the object from the top
of the ramp.

(b) Write the coupled equations of motion for these generalized coordinates.

(c) Suppose that « is small, indeed take it to zero for the purpose of this
calculation. For o = 0, find the normal frequencies and the normal
modes.

(d) Describe the motion resulting from the two normal modes.

Solution:
a) First construct the Lagrangian with the given coordinates:

L=T-U=
1 ooy 1 . , 1 1 ) ,
= §MX + §m(X—|—Dcosoz) + §mD sin” « —§k:(X—l) + mgD sin «
horizontarcromponent vertical :ormponent

where [ is the spring’s relaxed length. We will take it to be zero for the
remainder of the problem, as it does not qualitatively affect the final result
of the problem.

b) g—)L-( = (M 4+ m)X +mD cos

o]
oL _ kX



aL ) .
o0 =mD +mX cosa
oL __ :

9D — mgsin «

The equations of motion are:
(M +m)X + mDcosa + kX =0

mD +mX cos o — mgsina = 0
¢) Now simplify those equations of motion by assuming o = 0:

(M 4+m)X +mD +kX =0
mD +mX =0
Assume X = X;e™! and D = D, e™?, then

—(M +m)w? +k —mw?| 0
—mw? —mw?|

leading to
—mw?[—(M + m)w? + k] — m*w* = 0.
Solutions are w = 0 and —(M +m)w? +k+mw? = —Mw?+k = 0;w? = £
Then find the eigenvectors:
Forw=0: X =0, D = Do+ Dt
For w? = £: X = X, D =—X,
d) As expected for horizontal slope, the first mode corresponds to a sta-

tionary mass M and mass m moving with uniform velocity, the second mode
corresponds to oscillating mass M and stationary mass m.



(CM2) Two small balls of mass m are connected by a massless spring with
a spring constant k, and the setup is attached to the roof by a massless string
as shown in the figure. If the string is cut and the setup drops from rest, find
the motion of the two balls.

B

vy

Solution:

Analysis: the setup is only subject to gravity, and its center of mass has a
free-fall motion. On top of that, the two balls’ motion relative to the center of
mass is an oscillation as governed by the spring. This is a conserved system,
so we may use Lagrangian mechanics to find the equation of motion.

Approach: there are two degrees of freedom when the system is dropped
from the vertical position as shown in the figure. We can use y; and y»
to describe the height of the upper and lower balls relative to the floor,
and constant [y the free length of the spring (when it is not stretched or
compressed). The kinetic energy is

1 1
T = §myf + meg (1)
The potential energy includes two parts, the gravitational potential of the
two masses, and the mechanical energy

1
V= mgys +mgys + Sk(yr = y> = lo)>. (2)

The Lagrangian is L =T — V', and for two independent variables, we derive
two Euler-Lagrange equations

my; = —mg — k(yl — Y2 — lo),
mis = —mg + k(y1 — y2 — lo)-

(3)
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It is easy to solve the equations by rewriting them as

m(y + 42) = —2my,

(i — ) = —2k(y — o — o). @)

We define Y. = (y1 + y2)/2, which is just the position of the center of mass,
and Yy = (y1 — y2 — lp), which is the change of the spring length relative to
its free length. With this, we reduce the above differential equations to

}.}C:_g7

. (5)

mYd = —Qde
The first equation describes the motion of the center-of-mass subject to grav-
ity, and can be easily solved Y, = Y o— % gt%. The second equation describes an
oscillation motion, the solution being Y; = Yy cos(wt + ¢p). The oscillation
frequency is w? = 2k/m, and the other constants Yo, Yg, and ¢y are deter-
mined by the initial state. In particular, it is easy to find Yy = mg/k, ¢ = 0
from the initial equilibrium. From there, the motion of each ball can be found
as a superposition of free-fall and oscillation:

1 1 1 1 mm
=Y.+ =Y+ -ly=Y,— =gt* + = [_g cos(wt) + lo} ,
2 2 2 2Lk (6)
1 1 1 1 m
y2:}/c_§}/¢i_§lO:Y;O_§gt2_§ [?gcos(wt)—i—lo} .
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(CM3) A cube of mass m has constant density and edge length a. The cube
rotates about a fixed axis (z) on one edge, at fixed angular frequency w.

a) Find the cube’s angular momentum about the Z—E]XiS, and its kinetic
g
energy.

(b) Calculate the (linear, instantaneous) velocity of the center of mass.
What is the direction and magnitude of the force on the cube?

(c) The cube is released from its axis, so that there are no forces acting on
it. Describe its subsequent angular and linear velocities. Compare the
kinetic energy immediately before and after release. Do the same for
angular momentum.

Solution:
(a) It is convenient to work in the lab frame, where the z-axis is stationary.
The moment of inertia I about that axis is given by
dI = r*dm = pr*dv,

with density p = m/a®. Radius r is measured perpendicular to the axis.
The volume element is dV = dx dy dz.

m a a a 2
I:—/ / / 2? +9?) drdydz = ~ma®.
a3 2=0 Jy=0 J =0 ( ) 3



Note: We could have started from the moment of inertia Iy about the
center of mass. It just requires another step with the parallel axis the-
orem to get to I about the z-axis. The angular momentum and kinetic
energy are:

2 2

1 1
L=lwz= Fwma z; T= 5]0)2 = gm(aw)2.

All of the energy is rotational because we worked in an inertial frame in
which the axis of rotation is stationary.

The center of mass of the cube is moving at velocity

- wa

V =wWwr. = \/§qu5

This is not a constant velocity, because é is not constant. The cube
therefore experiences a centripetal acceleration of magnitude r.w? di-
rected inward (from the center of mass toward the z-axis, which we will
label —t.). The force is thus

When the cube is let go, Its center of mass continues in a straight line
with velocity

wa

vz
in a direction tangent to its direction of travel at the moment of release.
We’ve arbitrarily, but without loss of generality, named this direction
&. We chose Cartesian unit vector because the direction qﬁ varies with
the azimuthal angle ¢, which will continue to change as the cube moves
away along a tangent to its original circular path. The cube rotates
about its center of mass with unchanged angular velocity, The
disappearance of force F does not result in any torque or work done,
so the kinetic energy and angular momentum about the z-axis
remain the same as in part a.

V = Wr.& =
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(QM1) A particle with spin //2, and magnetic moment pu = S, where S
is the spin operator and + > 0 is the gyromagnetic ratio, sits in a uniform
magnetic field that suddenly switches direction at ¢t = 0:

| Boz, for t<0
B(t)—{Boz, for t>0

(a) Find the spinor wave function and the expectation value of the spin for
t < 0 given that it is in the ground state of the system.

(b) Find the expectation value of the spin (S(t)) for ¢t > 0.
(c) Make a plot of the spin components (S;(t)) as function of time.

Reminder: the spin-1/2 matrices are
(0 1 (0 —i (1 0
%*=\10) %= \i o) 27 \o -1/

Solution:
The Hamiltonian of spin in magnetic field is

h hB, B
’H:—u-B:—”yga-B and we denote E05720 wo el

2

(a) Find the spinor wave function and the expectation value of the spin for
t < 0 given that it is in the ground state of the system.

Before ¢t = 0 the system is in stationary state, that we know to be the
ground state. The stationary state satisfies

By =H) = —Ew, b = E (z) = —Ey ((1) (1)) (Z)

The ground state corresponds to the lowest eigenvalue, with the spinor

1 /1
: Eqog = —FE = —
ground state GS 05 Yas NG <1)

The expectation value of the spin is

h h
(S(t < 0)) = Vs yovas = 5 + 0§ + 0%

9



(b) Find the expectation value of the spin (S(t)) for t > 0.

To find the expectation value of the spin after ¢ > 0 we can use either
the Schrodinger picture (time-evolved state) or the Heisenberg picture
(time-evolved operator). In the Schrédinger picture we need to find the
time-evolution of the eigenvectors of the Hamiltonian; and we have

ih%iﬂ =Hy = —FEgo.¢ = v = W <(1) _01) v

ot
_ 1 iwot 0 —iwot __ 1 eiUJOt
= Y(t) =u (0> et +u (1) e = 75 et
where we set u,v = 1/ V2, as they are determined from the initial

condition ¥ (t = 0) = 9gs.
In the Heisenberg picture the state remains the same v = ¥gg but the
operators evolve

m%si = [Si,H] = —vBo[S;, S.] = —yBo€i-rihSi
0 0 9
= —atSz 0, atSy woSs 8th woSy

The solution is

Sz(t) = Sz (0) cos 2wyt+S,(0) sin 2wyt , Sy(t) = S,(0) cos 2wot— S, (0) sin 2wyt ,

and the expectation value is

bo| St

(S(t >0)) = @/}(t)Tgaw(t) — hLeS(t)has = d= cos 2wyt — gg sin 2wyt + 02

(c) Make a plot of the spin components (S;(t)) as function of time.

10



h/2

-h/27

S,=0 .
Yy
‘ 2n/ 20,
0
time
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(QM2) A particle with mass m is confined to a 2D infinite square well with
infinite potential barriers at * = —a, * = a, y = —a, and y = a.

The system experiences a weak potential that has the following form:
q 1 = Py
Here, /3 is a constant.
(a) Determine the energies, states, and degeneracies of the ground and first

excited state of the unperturbed system.

(b) Treating the potential as a perturbation, determine the energies and
states of the first two excited states of the perturbed system to lowest
order in H;.

Note: The following integral will be useful:
w/2
/ ucosusin2u du = 8/9

—7/2

Solution:

(a) The unperturbed system is a 2D infinite square well. The solution to the
time-independent Schrodinger equation is just the product of the solution
for a 1D infinite potential well in the x direction and the solution for a 1D
infinite potential well in the y direction. This solution is easily derived using
separation of variables. Note that the the wells extend from —a to a making
the total width of each well 2a.

The wavefunctions of the unpertubed system are:

where 1P (z) is the 1D solution for an infinite potential centered at x = 0
with a width of 2a:

qplD(x) _ ﬁcos (T;_Z/x) ) n' =1,3,5,...(n' : odd)

isin (—/:c) , n' =2,4,6,...(n : even)



The energies of these wavefunctions is the sum of the energies of the 1D
systems (which again can be shown using the separation of variables):
h2m?

Enon, = 8ma?

(n2 +n;)

The ground state has the lowest energy, which corresponds to n, = n, = 1.

Quantum number: n, =n, =1

State: |ngyn,) = |11)

Wavefunction:
1 T T
(ML) = 411 (2, y) = — cos (%x) cos (%y)
Energy:
h2m?
B =
LT dma?

Degeneracy: 1

For the first excited state, one of the quantum numbers is 2, while the
other is 1:

Quantum numbers: n, =2, n, =1orn, =1, n, =2

States: |21) or |12)

Wavefunctions:
1 . m T
(r121) = Vo1 (2, y) = ~sin (Ea:) coS <%y>
1 ™ . s
<ﬂ12> = wl,Z(fc?y) = a COS (%I) sin (Ey)
Energy:
5h2m?
E == E =
2 27 8ma?

Degeneracy: 2

13



(b) The perturbation will lift the degeneracy of the first excited state in the
unperturbed system. To get the energies and states, degenerate perturbation
theory is needed. Solve the eigenvalue equation for the perturbation over the
the degenerate subspace. The eigenvalues are the first-order correction to
the energies. The eigenvectors are the zeroth-order correction to the states
(i.e., superpositions of the degenerate states that form the ”good” states).

The matrix for the perturbation over the degenerate subspace is:

oo ((21012)  (12H)21)
"\ @1m12)  (@1]H)21)

The matrix elements need to be evaluated using the unperturbed wavefunc-
tions:

(12|H;[12) = / / —cos sm( )(ﬁxy)%cos (27; )sm(a )dxdy

=0 (by symmetry)

Likewise,

(21|H,|21) = 0 (by symmetry)

The off-diagonal elements are not 0:

(12|H,[21) = / / — cos —:C sin (gy> (ﬂxy)% sin <gx> oS (%y) dxdy
= [/_ cos (27;:6) x sin (g:c> d:cr
= g [(277@)2 /7;//22 cos(u)u Sin(2u)du]

ﬁa2210
ST

l\.')

14



The remaining off-diagonal element is easily calculated from the results above
because H; is Hermitian:

(21|H[12) = ((12|H;[21))*
6&2210
- 8174

The matrix for the perturbation then is:
0 A
m=(15)

ﬁa2210
~ 81t

where

The first-order corrections to the energies are the eigenvalues of this matrix
that can be found by solving the characteristic equation:

— A

OZ‘A —€

This equation yields the eigenvalues e . = —A and e, = A.

The zeroth-order correction to the states (aka the “good” states) are deter-
mined by the (normalized) eigenvectors which can be found by solving the
eigenvalue equation for each eigenvalue:

Hlﬁi = Eiﬁi

The eigenvalue and normalized eigenvector pairs are then:

N Ui S N
T o8It T T 2\~

BN AT
€L = = 817‘(4 U+—\/§ 1

Translating the results from the degenerate subspace to the states of the
unperturbed system. The first excited state will correspond to v_:

15



State:

1

=) = —(112) = [21))

Sl

2

Energy:

PR S5h?m?  Ba?2'0
T 8ma? 174

The second excited state will correspond to v,

State:
) = = (]12) + [21))
V2
Energy:
B, — 5h2m?  Ba?2'0

"~ 8ma? 8174

16



(QM3) Consider a quantum particle with mass m in a 1D harmonic poten-
tial of the form V(z) = fw?z?.

(a) Determine how the product of the squares of the uncertainty of posi-
tion and momentum (agaﬁ) depend on the principle quantum number of the
system, n. Find the algebraic dependence and make a plot for all quantum
numbers up to n = 2.

(b) Of all possible energy eigenstates, which (if any) are states of minimum
uncertainty (i.e. which energy eigenstates are at the limit established by the
Heisenberg uncertainty principle)?

The following relationships using the ladder operators may be useful

mw

a= 2h<+——m
p_ w1
“ 2h o @ mwp)

aln) =+vn|n—1)
atn) =V +1|n+1)

Solution:
(a) The square of the uncertainty for position and momentum can be ex-
pressed as a difference between two expectation values:

By symmetry (i.e., because V(x) is symmetric around = = 0):

() =0
(p) =0

So, the problem simplifies to finding (z?) and (p?) for the quantum harmonic
oscillator as a function of the principal quantum number, n. Determining

17



this quantity is most easily accomplished using the provided ladder operators.

Using the provided relationships, & and p can be expressed as linear combi-

nations of the ladder operators.
Vo ()
a+a
2mw

R hmw
p=i 5 (aT—a>

z

Squaring the above expressions and noting that a and at do not commute
yields:

72 = <a + aT +ata + aaT>
Qmw
N hmw 2 ~
p? = 5 <d2 +at —ata— daT>

For (2?) then (using the provided operations):
(%) = (nla*n)

= o al (@ +at” + ala+ aat ) )

= 5,— (@ +a' +afa+adl )n
h

= ﬁ(\/ﬁ\/n —1(nn—-2)+vn+1vn+2(nn+2)
+ vVnvn(nn) + vVn+ 1vn + 1 (n|n))
h

— " ont1

2mw< n+1)

Note that (n|n — 2) = (n|n + 2) = 0 because of orthogonality of the states.

Likewise,

(p*) = (nlp*n)
I
:_$ (n\(a + a —aTa—aaT>|n>

- Fm;w (2n +1)

18



Therefore, for the quantum harmonic oscillator, the product of Uiag increases
quadratically with quantum number, n

7.0, = (&) )

= %(271 +1)?

This value can be tabulated for the first few states of the QHO (the ground
state corresponds to n = 0):

n olo} 35
0 h? o 30
(ground state) 4 —
N ]
- X s .
1 7O £ 20 ’
Na,
h? SRLE
2 Laen) o
; v 10 - e
T 5-
0

0 1 2
Principal quantum number, n

(b) The Heisenberg uncertainty principle states that 0,0, > h/2 which means
the minimum possible value of 0207 is h? /4. The ground state of the quantum
harmonic oscillator has this minimum value (no matter what the mass of the
particle or the frequency of the potential are!).

19
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Information

Useful vector identity

VXVxA=V(V-A)-VA

Table 1: PHYSICAL CONSTANTS

SYMBOL | NAME \ VALUE | UNITS
c speed of light in vacuum 299792458 ms !
G gravitational constant 6.67408 - 10~ 11 N m? kg2
g standard gravity 9.80665 m s 2
h Planck constant 6.62607015 - 10~3* Js
4.13566770 - 1071° eV's
h=h/2r | reduced Planck constant 1.05457182 - 10734 Js
6.58211957 - 10716 eV s
e elementary charge 1.602176634 - 10~17 C
€0 electric constant 8.854 - 10712 C?N-1'm2
Lo magnetic constant 471077 TmA™!
N4 Avogadro’s constant 6.02214076 - 103 mol !
kg Boltzmann’s constant 1.380649 - 10723 JK!

R = N,kp | gas constant 8.314462618 J mol™! K1
o= % Stefan-Boltzmann constant 5.670367 - 1078 Wm 2 K™
Mme electron mass 9.109 - 1073¢ kg

0.5109 MeV
m, proton mass 1.672-10727 kg

938.2 MeV
M, neutron mass 1.674-107%7 kg

939.5 MeV
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(EM1) A thin ring of copper with electrical conductivity o, density p, mass
m, and radius r rotates about an axis perpendicular to a uniform magnetic
field H with initial angular frequency wy. Under the assumptions that the
energy goes into Joule heating and wy is rapid enough that the ring can
complete many full rotations, find an expression for the time it takes for the
angular frequency to decrease to wg/e (note In(e) = 1) in terms of the given
quantities. Ignore the ring’s self inductance.

rotation Q)
axis
N

Solution:
Solution:

(1) Using a conservation of energy approach: The emf should look
like: € = mr? Hwsinwt.

The electrical power dissipated by the ring will be P = I?’R = €2/ R, where

the resistance R of the ring is R = %.
Putting this together and time averaging gives F,,, = %{){2“2, for the

electrical power dissipated in one rotation.

22



The electrical power dissipated shows up as a loss of mechanical energy.

. 2 27r752,,2
Therefore, energy conservation tells us that: < (imr?es) = —omrHw”
, at \ 2 2 8p
. . . . 2
This can be simplified to w = —%

This equation has the solution w = w,e™*/7 with 7 = %, so our value for ¢
is 7.

(2) Using the torque: 7 = smrw and 7 = i X H, where u is the dipole
moment.

The current I = H”Tl%sinwt, so the dipole moment for the loop is u =
%sinwt. This leads to a torque of magnitude 7 = %Sitﬁwt.

Placing the equation for R from the first solution into the last expression
gives the differential equation w = —%w, identical to the solution found
above.

23



(EM2) Visible light is incident normally on an aluminum (Al) plate. De-
scribe how the electric (and magnetic) fields behave inside a thick plate, and
use this to estimate how thick should the plate be to reduce the transmitted
light power to 1075 of the incident power. (You can ignore all reflections
inside the plate to estimate transmission.)

Take the visible light frequency to be v = 5 - 10 Hz with wavelength
A ~ 700 nm. The conductivity of Al is ¢ = 3.5- 107 Q" 'm™" (SI units)
= 3-10'" s7! (Gaussian, cgs units).

Solution:
The EM fields inside the metal cause flowing currents
j=oE
and dissipation of energy, and thus decay exponentially over the skin-depth.
We need to find this lengthscale.

In Gaussian system we write the Maxwell equations inside the metal
(settinge =1, p=1)

10B
vxE-_1%B
c Ot

47 10E
B=—j4+-——

v X c‘]+08t

Assuming all fields and currents oscillate with the same frequency
(E, B, j) = (E(z),B(x).j(z)) e

we write these equations for complex amplitudes

V x E(z) = %wB(x)

we combine the two equations, using V-E=0in VXV XE =V (V- -E)—

VE, : :
~V2E(z) = — (410— - E) E(z)

C C C

24



In vacuum we have the usual wave equation with traveling wave solution

w? - or  w

~V?E(z) = C—QE(m) = E(z) = Eye*™ with Ek=—==

Inside metal we have, noticing that o > w (easy to see in Gaussian units!)

w (4m w drow
—V?E(z)=— | —0—— | E(x)~i E
@)= (Fo - %) Bl ~ i 5 )
Looking for solution F(x) o €* we have condition on &:
4
2 Amow

c2

which means the wave number inside the metal is a complex number:

. /47mw \/— 47raw 1+z /47raw i)f |20
c w

where we selected only the + solution that decays into the metal:

» 2 2
B(z) = Boe® ™0 B =k 2 5 =k =k L =k 2
w w 1%

The decay length is

5 A v 700 nm /51014 4
o or V3.107 T

The light power flux at some position x is given by the time-averaged Poynt-
ing vector S(z) = =E(r) x H*(z) and is proportional to the square of the
field’s amplitude so the reduction of transmission over the plate is equal to
the ratio of the incoming and outgoing amplitudes (and here we neglect the
small amount of reflection back into the plate that will result in multiple
internal reflections)

E(z))? 5
| @' =P 10" = L~ -In10%~30nm

25



Note 1: At the interfaces we have mismatch of impedances that lead
to additional reduction in the transmission amplitudes. For example, at the
first vacuum-metal interface of the thick plate we have

Er 2

E  1+x/k

but this leads to only about |k/k| ~ /o /v ~ 10 times amplitude reduction,
and the main drop in the energy flux still comes from the exponential decay
inside the metal.

Note 2: In SI units the system of equations for complex amplitude is

V X E(z) = iwB(z)
V X B(z) = po (0 — ggiw) E(x)

and the skin depth formula in the limit ¢ > wey is

1+1 /2
—AE = iwugocE = K= uoe = § =
Mo \/§ HOEQ Whoo

26



(EM3) Two thin square, parallel metal plates, a X a, are separated by a gap
b < a. The gap is 1/3 filled by dielectric, permittivity e, attached to one
plate as shown. The plate adjacent to the dielectric is at potential Vj, and
the other is grounded. Find the electric field between the plates, ignoring
edge effects. Also find the bound and free charge densities.

e

-

by

—

Solution:

Let’s define = as the coordinate perpendicular to the plates, with x = 0 on
the grounded plate, and z = b and the other plate. Since V - D = p; (free
charge only), and because of the slab symmetry, we infer that D = Dz, with
D a constant, both in the dielectric and in the empty space between the
plates. We know that D = €¢E, so

Dx 2b

—, U<z < —;

E = €0, 3
Dx 2b

—, —<z<b
€ 3

We need to put D in terms of the given applied voltage. Using E = —VV/,

b
bD (2 1 —3Vheeq
0 /0 v 3 (eo + e) b(2¢ + €)

The electric field and the displacement are zero outside the plates. Employing
both forms of Gauss’s Law (VD = p; and V-E = p/¢;), we find the surface
charges to be:

27



charge] location— | x = x =2b/3 r =

o D | —=D(1 —¢y/e) —Dey/e
Orf D 0 —-D

oy =0 —0y 0 —D(1—¢y/e) | D(1 —¢€/e)

28
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(ST1) The Sun has a surface temperature of Ts = 5800 K and its radius is
Rg = 7.0x10® m. The Earth has a radius of R = 6.4 x10° m and it is a
mean distance d = 1.5x10'" m from the sun. Assume that both the Sun and
the Earth absorb all electromagnetic radiation that is incident upon them,
and that the Earth’s temperature T is in a steady state, so that it does not
change with time. Find an expression for Tx and provide an approximate
numerical value.

Solution:

The sun radiates energy uniformly in all directions with a rate P = oTg4m R%.
Note o is the Stefan-Boltzmann constant.

A disc of area wR% intercepts light from the sun, so the rate with which
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energy strikes the Earth’s bright side is Ppy = P_5.

The Earth absorbs, but also emits radiation. If the two are in equilibrium,

2
Earth’s temperature stays constant. Thus if oTddn R 5 = o T4 R, this
is the case. This reduces to

R 1/2
Ty =Ty (2—5) .

Notice how it is independent of the Earth’s radius - any size object at this
distance from the sun will have the same temperature! Substituting numbers,
after basic cancellations we get

7 |1 1
Tp = 5804/ — = 580,/ —————— ~290 (1 — — | ~ 280 K
F 30 4(1 + 2/28) ( 28)
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(ST2) A rubber band can be modeled as a chain of N segments of identical
length ¢ joined end to end. Imagine that a weight W hangs from the very
end of our rubber band while the other end is firmly fastened to a peg an-
chored to the wall. The temperature is 7. Each segment can be in one of
two states, down or up, relative to the vertical. The figure illustrates a short
length of the rubber band with segments oriented up and down. Determine
the average length L of the rubber band as a function of W and 7. Show
that your model agrees with your physical expectations for L at low and high
T.

segments oriented down

segments oriented up n

Solution:

There are two possible states for each segment. If the segment is down,
the potential energy of the weight is decreased by —W /. If the segment is
up, the potential energy of the weight is increased by +W /. The partition
function for the system is Z = e + ¢=W*% where 3 = 1/kT. The average
contribution of each segment to the total average length L is
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In turn, L= Ngm.

At high T', one can expand the exponentials to find L ~ (N¢)W {3 — 0. This
tells us that all the links are in a sense ‘coiled up” and the rubber band shrinks.

At low T there is inadequate thermal energy to populate the ‘up’ state so

L ~ (NY) - the band is completely extended.
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(ST3) A sealed can of volume V) containing air at room temperature (7} =
300K) is run over and flattened by a large, fast moving truck. Amazingly,
the can does not leak! At the moment the truck is on top of the can, its
volume is Vo &~ V;/32. Estimate the temperature, Ty, of the air in the can
at that moment. Since air is an ideal gas and is mostly diatomic, you may
assume Cp = TR/2 and Cy = bR/2.

Solution:
Because it happens fast, the compression is adiabatic. The adiabatic process
is described by

C 7
PV =PV), where ~=— =~
Cy 5

The ideal gas law, PV = nRT, allows us to eliminate the pressure, so

T2 Vl i 2
L = 32%/5 = 4,
7= (%)

Hence,

| T, = 1200K |
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