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(CM1) A periodically driven, damped harmonic oscillator of mass m and
spring constant k satisfies the equation

mẍ = −k x − mν ẋ + F0 cos(ωt) ,

where ν is a damping coefficient, and F0 and ω are the amplitude and fre-
quency of driving. The solution can be written in the form

x(t) = A cos
[
ωt − ϕ

]
,

where A and ϕ are both real and depend on the parameters of the problem.

a. Find an expression for A(ω) in terms of the parameters of the problem.

b. The figure below is a plot of A(ω) for values m = 0.1 kg, k = 0.9N/m,
ν = 0.5 s−1, and F0 = 0.45 N. Axes are scaled to Y and W . Use the
results of a. to write the values of Y and W in SI units (i.e. m, kg, s).

(Continued on next page)
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The figure below shows versions of A(ω) using the same values of Y and W
found in part b., but in each case one parameter has been changed.
Please match the appropriate figure to the cases described below. Write text
justifying your choice.

c. All parameters are the same as in b., except k = 0.1N/m.

d. All parameters are the same as in b., except ν = 1.0 s−1.

Solution:

a. Representing x(t) as the real part of Ã e−iωt, cos(ωt) as the real part of
e−iωt, and substituting these into the governing equation yields(

−ω2 − iν ω +
k

m

)
Ã =

F0

m
. (1)
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Solving for Ã yields

Ã =
F0/m

k/m − ω2 − iν ω
= Aeiϕ . (2)

The magnitude of this expression gives A(ω)

A(ω) = |Ã| =
F0/m√

(k/m− ω2)2 + ν2 ω2
. (3)

b. Evaluating eq. (3) at frequencies, ω = 0 and ω = ω0 =
√
k/m

A(0) =
F0

k
, A(ω0) =

F0

k

ω0

ν
. (4)

From values given in the problem, m = 0.1 kg and k = 0.9N/m, we
find ω0 = 3 rad/s. Since this is close to the peak, we surmise that
W = 1 rad/s. Then from F0 = 0.45 N we find A(0) = F0/k = 0.5 m.
From the graph we see A(0)/Y = 1/3, so

Y = 3A(0) = 3 (0.5m) = 1.5m .

As a check we note that with ν = 0.5 s−1, the ratio ω0/ν = 6, so the
height of the peak should be A(ω0) = 3 m, which is consistent with the
graph: A(ω0)/Y = 3/1.5 = 2.

c. Assigning k = 0.1N/m yields ω0 = 1 rad/s, so the peak should occur
near ω/W = 1, as in panels (2), (4), and (6). We also find A(0) =
F0/k = 4.5 = 3Y , which occurs only for (2). As a check we use ω0/ν = 2
to obtain A(ω0) = 2A(0) = 6Y . This occurs in (1) and (2), but only (2)
has a peak at the correct location.

d. Setting ν = 1 s−1 means ω0 = 3 rad/s as before, which is consistent with
panels (1), (3), and (5). The ratio ω0/ν = 3, means

A(ω0) = 3 (0.5m) = 1.5m = Y .

This is consistent only with (3).

Alternative version of a.
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It is possible, albeit cumbersome, to solve a. without resorting to com-
plex variables. Begin using the trig identity to write

x(t) = A cos
[
ωt− ϕ

]
= A cos(ωt) cosϕ + A sin(ωt) sinϕ . (5)

Its derivatives

ẋ(t) = −Aω sin(ωt) cosϕ + Aω cos(ωt) sinϕ (6)

ẍ(t) = −Aω2 cos(ωt) cosϕ − Aω2 sin(ωt) sinϕ (7)

give

ẍ + ν ẋ +
k

m
x = A

[( k

m
− ω2

)
cosϕ + ω ν sinϕ

]
cos(ωt)

+ A

[( k

m
− ω2

)
sinϕ − ω ν cosϕ

]
sin(ωt) . (8)

Equating this with (F0/m) cos(ωt) leads to two separate equations

A

[( k

m
− ω2

)
cosϕ + ω ν sinϕ

]
=

F0

m
(9)

( k

m
− ω2

)
sinϕ − ω ν cosϕ = 0 (10)

The second gives

sinϕ =
ω ν

k/m− ω2
cosϕ (11)

Using this in eq. (9) gives

A
cosϕ

k/m− ω2

[
(k/m − ω2)2 + ω2ν2

]
=

F0

m
(12)

Then we may use eq. (11) in another trig identity,

1

cos2 ϕ
= 1 +

sin2 ϕ

cos2 ϕ
= 1 +

ω2 ν2

( k/m− ω2)2

=
( k/m− ω2 )2 + ω2ν2

( k/m− ω2 )2
, (13)
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from which we obtain

cosϕ

k/m− ω2
=

1√
(k/m− ω2)2 + ω2ν2

(14)

Using this in eq. (12) leads immediately to eq. (3)
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(CM2) A particle of mass 3m is suspended from a fixed point O by a light
linear spring with spring constant k. A second particle of mass 2m is in turn
suspended from the first particle (the one of mass 3m) by a second spring
that is identical to the first spring. The system only moves in the vertical
direction and is subject to gravity.

a. Let y1 denote the distance of the first particle from the mounting point,
y2 represent the distance of the second particle from the first particle (as
shown in the sketch below) and l represent the relaxed spring length.
Using these coordinates, demonstrate that the Lagrangian is:

L =
3m

2
ẏ21+m(ẏ1+ẏ2)

2+3mgy1+2mg(y1+y2)−
1

2
k(y1−l)2−

1

2
k(y2−l)2

b. Find the equilibrium position of the two masses from the equation of
motion.
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Solution:
To derive the Lagrangian for the given system, we will use the generalized
coordinates y1 and y2 and the standard Lagrangian formalism. The system
consists of two masses, 3m and 2m, connected by springs, subject to gravity.

Part a:

The kinetic energy of the system consists of the kinetic energies of both
masses.

The kinetic energy of the first mass is:

T1 =
1

2
(3m)ẏ21 =

3m

2
ẏ21

and the kinetic energy of the second mass is:

T2 =
1

2
(2m)(ẏ1 + ẏ2)

2 = m(ẏ1 + ẏ2)
2

Thus, the total kinetic energy T of the system is the sum of T1 and T2:

T =
3m

2
ẏ21 +m(ẏ1 + ẏ2)

2

The potential energy consists of the spring potential energy and the gravita-
tional potential energy of the masses.

The gravitational potential energy of the first mass is:

Ugrav,1 = −3mgy1

The second mass (of mass 2m) is at a height y1+y2 from the fixed point and
its gravitational potential energy is therefore:

Ugrav,2 = −2mg(y1 + y2)

Thus, the total gravitational potential energy is:

Ugrav = −3mgy1 − 2mg(y1 + y2)
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Now, we need to find the potential energy of the springs. The first spring is
stretched by a distance y1 − l from its natural length. The potential energy
in the first spring is:

Uspring,1 =
1

2
k(y1 − l)2

The second spring is stretched by a distance y2 − l from its natural length.
The potential energy in the second spring is:

Uspring,2 =
1

2
k(y2 − l)2

Thus, the total spring potential energy is:

Uspring =
1

2
k(y1 − l)2 +

1

2
k(y2 − l)2

The Lagrangian L is given by the difference between the kinetic energy and
the potential energy:

L = T − U

Substituting the expressions for T and U that we derived:

L =

(
3m

2
ẏ21 +m(ẏ1 + ẏ2)

2

)
−
(
−3mgy1 − 2mg(y1 + y2) +

1

2
k(y1 − l)2 +

1

2
k(y2 − l)2

)
Simplifying the Lagrangian:

L =
3m

2
ẏ21 +m(ẏ1 + ẏ2)

2 +3mgy1 +2mg(y1 + y2)−
1

2
k(y1 − l)2 − 1

2
k(y2 − l)2

Part b:

To find the normal frequencies and modes, we first need to find the equations
of motion, we use the Euler-Lagrange equations, which are given by:

d

dt

(
∂L

∂ẏi

)
− ∂L

∂yi
= 0
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where y1 and y2 are the generalized coordinates, and L is the Lagrangian.

The system of equations of motion for the two masses is found as:

5mÿ1 + 2mÿ2 − 5mg + k(y1 − l) = 0

2m(ÿ1 + ÿ2)− 2mg + k(y2 − l) = 0

In equilibrium the net force will vanish and the masses will be at rest, this
means the equations of motion will become

−5mg + k(y1,0 − l) = 0

−2mg + k(y2,0 − l) = 0

Solving for the equilibrium positions y1,0, y2,0 we obtain

y1,0 =
5mg

k
+ l

y2,0 =
2mg

k
+ l
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(CM3) Consider a free sphere spinning about vertical axis with period T .
The sphere is solid, with mass M and radius R, and moment of inertia
I = (2/5)MR2. It has two point-like masses m initially sitting at each pole.
Gradually these masses “flow” from poles to the equatorial region to form
a single thin uniform ring around the entire equator, spinning together with
the sphere.
Find the period of the rotation in the new configuration. How do the ro-
tational energy and the angular momentum of the system change between
initial and final states? If they change, suggest a mechanism how this hap-
pens.

m

m

2m

M M

R

Solution:
The moment of inertia during the process changes from

Ii =
2

5
MR2 −→ If =

2

5
MR2 + 2mR2 > Ii

From angular momentum conservation we have decreasing of the angular
velocity

Iiωi = Ifωf ⇒ ωf = ωi
Ii
If

= ωi
M

M + 5m

and the period of rotation becomes longer:

Tf = T
M + 5m

M
= T

(
1 +

5m

M

)
The rotational energy decreases in the process,

Ef =
1

2
Ifω

2
f =

Ii
If
Ei < Ei
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- part of rotational energy goes into accelerating mass 2m to rotate together
with the sphere at one angular velocity (via friction).

INCORRECT solution (4 points total): if one assumes that energy is con-
served in the process, one gets

INCORRECT : ωf = ωi

√
Ii
If

and that would imply the angular momentum increases:

INCORRECT : Lf = Ifωf = Li

√
If
Ii
> Li

This is unphysical, since there is no external torque on the system that would
produce this effect.
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(QM1) A spin 1/2 particle, with gyromagnetic ratio γ, is subject to a mag-
netic field B = B0ẑ giving it a Hamiltonian

Ĥ = −γB0 Ŝz . (15)

Sy is measured at t = 0 and found to be +ℏ/2.

a. Write the state |ψ(t)⟩ for t ≥ 0 in terms of normalized eigenstates of Ĥ.

b. Use the result of a. to compute ⟨Sx⟩ as a function of time for t ≥ 0.

The spin operators, expressed in | ↑⟩, | ↓⟩ basis, are given by

Ŝx =
ℏ
2

[
0 1
1 0

]
, Ŝy =

ℏ
2

[
0 −i
i 0

]
, Ŝz =

ℏ
2

[
1 0
0 −1

]

Solution:

a. The energy eigenstates are the eigenstates of Ŝz, namely

| ↑⟩ , E↑ = −ℏγB0

2
; | ↓⟩ , E↓ =

ℏγB0

2
. (1)

To find the initial values we must find the eigenstates of Ŝy. We do this
by finding non-trivia solutions to[

−λ −i
i −λ

]
·
[
v↑
v↓

]
= 0 . (2)

Setting to zero the determinant of the matrix, λ2 − 1, gives eigenvalues
λ = ±1. The top row of eq. (2) yields

v↓ = i λ v↑ , (3)

and the bottom row will be the same since the matrix has zero deter-
minant. The normalized eigenvectors corresponding to λ = ±1 are

λ = +1 , |v+⟩ =
1√
2
| ↑⟩ +

i√
2
| ↓⟩

λ = −1 , |v−⟩ =
1√
2
| ↑⟩ − i√

2
| ↓⟩
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The measurement yielding λ = +1 at t = 0 collapses the state into |v+⟩.
Thereafter each components evolves with its own factor e−iEt/ℏ,

|ψ(t)⟩ =
1√
2
| ↑⟩ eiγB0t/2 +

i√
2
| ↓⟩e−iγB0t/2 . (4)

b. To find the expectation we express |ψ(t)⟩, in eq. (4), as a column vector

|ψ(t)⟩ =
1√
2

[
eiγB0t/2

i e−iγB0t/2

]
(5)

and ⟨ψ(t)|, as a row vector

⟨ψ(t)| =
1√
2

[
e−iγB0t/2, −i eiγB0t/2

]
. (6)

The expectation is then

⟨ψ|Ŝx|ψ⟩ =
ℏ
4

[
e−iγB0t/2, −i eiγB0t/2

]
·
[

0 1
1 0

]
·
[

eiγB0t/2

i e−iγB0t/2

]

=
ℏ
4

[
i e−iγB0t − i eiγB0t

]
=

ℏ
2
sin
(
γB0t

)
. (7)
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(QM2) An electron is confined to a 2D infinite square well with infinite
potential barriers at x = −a/2, a/2 and y = −a/2, a/2. A weak perturbation
exists in the system of the following form:

Ĥ ′ = V0x̂ŷ

where V0 is a positive, real constant.

Determine how the perturbation changes the energies and wave functions of
the first two excited states to lowest order in V0.

Note: you may find some of the below integrals useful:∫ a/2

−a/2

cos
(π
a
x
)
x sin

(
2π

a
x

)
dx =

8a2

9π2∫ a/2

−a/2

cos

(
2π

a
x

)
x sin

(π
a
x
)
dx = −10a2

9π2∫ a/2

−a/2

sin

(
2π

a
x

)
x sin

(
2π

a
x

)
dx = − a2

8π

Solution:

The unperturbed system can be easily solved using the separation of vari-
ables technique. For the unperturbed system, the first excited state is 2-fold
degenerate. The wave functions are:

〈
r⃗
∣∣ψ0

2a

〉
= ψ0

2a(x, y) =
2

a
cos
(π
a
x
)
sin

(
2π

a
y

)
〈
r⃗
∣∣ψ0

2b

〉
= ψ0

2b(x, y) =
2

a
sin

(
2π

a
x

)
cos
(π
a
y
)

The energies of the first excited state in the unperturbed system is:

E0
2 =

π2ℏ2

2ma2
(1 + 22) = 5

π2ℏ2

2ma2
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Because the degeneracy of the excited state is 2, degenerate perturbation
theory is needed to analyze the effect of the perturbation. In general, the
perturbation is expected to lift the degeneracy of the unperturbed excited
state, yielding a superposition of the unperturbed states at different energies.

The first step is to construct the matrix representation of Ĥ1 over the degen-
erate subspace. This solution uses the following coventions:

|ψ0
2a⟩ →

[
1
0

]
|ψ0

2b⟩ →
[
0
1

]

Following this convention, the Ĥ ′ is represented by the following matrix:

H ′ =

[
H ′

11 H ′
12

H ′
21 H ′

22

]
=

[
⟨ψ0

2a|Ĥ ′|ψ0
2a⟩ ⟨ψ0

2a|Ĥ ′|ψ0
2b⟩

⟨ψ0
2b|Ĥ ′|ψ0

2a⟩ ⟨ψ0
2b|Ĥ ′|ψ0

2b⟩

]
The matrix elements need be calculated. The first diagonal matrix element
is:

〈
ψ0
2a

∣∣Ĥ ′∣∣ψ0
2a

〉
=

∫ a/2

−a/2

ψ0
2a(x, y)(V0xy)ψ

0∗
2a(x, y)dxdy

= V0
4

a2

(∫ a/2

−a/2

x cos2(
π

a
x)dx

)(∫ a/2

−a/2

y sin2(
2π

a
y)dy

)
= 0

Similarly, 〈
ψ0
2b

∣∣Ĥ ′∣∣ψ0
2b

〉
= 0
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The off-diagonal matrix elements are non-zero:

〈
ψ0
2a

∣∣Ĥ ′∣∣ψ0
2b

〉
=

∫ a/2

−a/2

ψ0
2a(x, y)(V0xy)ψ

0∗
2b (x, y)dxdy

= V0
4

a2

(∫ a/2

−a/2

cos
(π
a
x
)
(x) sin

(
2π

a
x

)
dx

)(∫ a/2

−a/2

cos
(π
a
y
)
(y) sin

(
2π

a
y

)
dx

)

= V0
4

a2

(∫ a/2

−a/2

cos
(π
a
x
)
(x) sin

(
2π

a
x

)
dx

)2

= V0
4

a2

(
8a2

9π2

)2

= V0a
2 256

81π4

= δ

The other matrix element can be easily calcuated because H ′ must be Her-
mitian: 〈

ψ0
2b

∣∣Ĥ ′∣∣ψ0
2a

〉
= (

〈
ψ0
2a

∣∣Ĥ ′∣∣ψ0
2b

〉
)∗

= δ

So, the matrix representation of Ĥ ′ over the degenerate subspace is:

H ′ =

[
0 δ
δ 0

]
The eigenvalues of H ′ are the first-order corrections to the energy due to the
perturbation. These are:

E1
± = ±δ

The lowest-order corrections to the states are the normalized eigenvectors of
H ′:

v⃗± =
1√
2

[
1
±1

]
These eigenvectors correspond to the states as:
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v⃗± → |ψ±⟩ ≈
1√
2
(|ψ0

2a⟩ ± |ψ0
2b⟩)

So, the first excited state of the perturbed system is,

|ψ−⟩ ≈
1√
2
(|ψ0

2a⟩ − |ψ0
2b⟩) E− ≈ 5

π2ℏ2

2ma2
− V0a

2 256

81π4

And the second excited state of the perturbed system is,

|ψ+⟩ ≈
1√
2
(|ψ0

2a⟩+ |ψ0
2b⟩) E+ ≈ 5

π2ℏ2

2ma2
+ V0a

2 256

81π4
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(QM3) A quantum harmonic oscillator is prepared in a state

|ν⟩ = e−|ν|2/2
∞∑
n=0

νn√
n!
|n⟩ with ν =

√
Neiθ .

Here N and θ are arbitrary real numbers, and |n⟩ are the orthonormal eigen-
states of the oscillator Hamiltonian H = ℏω(a†a+ 1/2), with a†a|n⟩ = n|n⟩,
where a†, a are raising and lowering operators, with commutation relation[
a, a†

]
= 1.

(a) In terms of N , θ, what is the probability of finding the oscillator in
eigenstate n?

(b) Show that |ν⟩ is properly normalized. Recall Taylor expansion of the

exponential function ex =
∑∞

k=0
xk

k!
.

In the remaining questions use the fact that |ν⟩ is an eigenstate of operator
a (you don’t have to prove it):

a|ν⟩ = ν|ν⟩ and its adjoint ⟨ν|a† = ⟨ν|ν∗ .

Note that a acts to the right and a† acts to the left to get the eigenvalue
property.

(c) Find the expectation value Ē of energy measurement in state |ν⟩. Ex-
press it in terms of N , ω, ℏ.

(d) Find the variance σ2
E of energy measurement in state |ν⟩. Express it in

terms of N , ω, ℏ. (It’ll help to use the commutation relation to write
a†aa†a = a†a†aa + a†a so that all a can freely act to the right on |ν⟩,
and a† can act to the left on ⟨ν|).

(e) Based on (c) and (d), is |ν⟩ an energy eigenstate of the oscillator? Does
it agree with (a)? Using σE/Ē ratio argue whether |ν⟩ looks like an
eigenstate of the oscillator in the limit of small or large N?

Solution:
State

|ν⟩ = e−|ν|2/2
∞∑
n=0

νn√
n!
|n⟩ where ν =

√
Neiθ

is called ‘coherent’ state.
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(a) In terms of N ,θ, what is the probability of finding the oscillator in
eigenstate n?

Pν(n) =

∣∣∣∣e−|ν|2/2 ν
n

√
n!

∣∣∣∣2 = e−|ν|2 |ν|2n

n!
= e−NN

n

n!

- Poisson distribution. Fluctuations in number n described by this dis-
tribution are known as ‘shot noise’.

(b) Show that |ν⟩ is properly normalized. Recall Taylor expansion of the

exponential function ex =
∑∞

k=0
xk

k!
.

⟨ν|ν⟩ =
∞∑
n=0

Pν(n) = e−N

∞∑
n=0

Nn

n!
= e−NeN = 1

(c) Find the expectation value Ē of energy measurement in state |ν⟩. Ex-
press it in terms of N , ω, ℏ.

Ē = ⟨ν|H|ν⟩ = ℏω⟨ν|a†a+ 1

2
|ν⟩ = ℏω(ν∗ν +

1

2
) = ℏω(N +

1

2
)

(d) Find the variance σ2
E of energy measurement in state |ν⟩. Express it in

terms of N , ω, ℏ.
We can use either formula for variance:

σ2
E = ⟨ν|H2|ν⟩ − ⟨ν|H|ν⟩2 or = ⟨ν|(H− Ē)2|ν⟩

The latter might be slightly simpler, so we’ll use that:

σ2
E = (ℏω)2⟨ν|(a†a−N)2|ν⟩ = (ℏω)2⟨ν|a†aa†a− 2Na†a+N2|ν⟩

= (ℏω)2⟨ν|a†a†aa+ a†a− 2Na†a+N2|ν⟩
= (ℏω)2(ν∗2ν2 + ν∗ν − 2Nν∗ν +N2)

= (ℏω)2(N2 +N − 2N2 +N2)

= (ℏω)2N

(e) Based on (c) and (d), is |ν⟩ an energy eigenstate of the oscillator? Does
it agree with (a)? Using σE/Ē ratio argue whether |ν⟩ looks like an
eigenstate of the oscillator in the limit of small or large N?
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Since variance σE ̸= 0 in state |ν⟩ - then it is not an energy eigenstate.
We can see that from (a) as well, since we have finite probability of
finding the oscillator in multiple n-states. The ratio

σE
Ē

=

√
N

N + 1/2
≪ 1 if N ≫ 1 ,

which looks like a state with sharp energy distribution. This is a model
for coherent laser light with large average number of photons N .

The ratio is also 0 for N = 0, but this corresponds to trivial ground
energy state of the oscillator.
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(EM1) A square loop with resistance R and side length l is pulled slowly
toward a region of uniform magnetic field with a constant speed v0. The
magnetic field has a strength B0 and is oriented orthogonal to the plane of
the loop. The width of the region with non-zero magnetic field is L, where
L = 2l. Assume that at time t = 0, the right edge of the loop is just about
to enter the magnetic field. Also assume that the self-inductance of the loop
is negligible.

(a) Determine the magnitude and direction of the electric current I in the
loop for all times. Plot the magnitude of the current as a function of time.

(b) Determine the total energy dissipated by the loop as it traverses through
the region with magnetic field.

Solution:
(a) As the loop enters or leaves the magnetic field region, i.e. 0 < t < l/v0
or L/v0 < t < (L+ l)/v0, there is an electromotive force

dΦ

dt
= v0lB0.

Because the motion is slow we may neglect self-inductance and equate the
motional EMF to the restive drop, leading to

|I|R = v0lB0,
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and then to

|I| = v0lB0

R
.

Also, according to Lenz’s law, as the loop enters the magnetic field, the di-
rection of the current is clockwise, and as the loop leaves the magnetic field,
current is counterclockwise.

When the loop is entirely inside the magnetic field, or at l/v0 < t < L/v0,
the flux does not change, therefore there is no induced current. From these,
we can plot the current with time as in the figure.

(b) During the periods when the loop enters or leaves the magnetic field
region, the power of Joule dissipation is constant, given by

P = I2R =
v20l

2B2
0

R
.

It takes the same amount of time to enter the region completely and to leave
the region completely, ∆t = l/v0, so the total energy dissipated is

W = 2P∆t = 2I2R
l

v0
=

2v0l
3B2

0

R
.
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(EM2) A capacitor is made of a pair of concentric spherical shells of radius
a and b (a < b). Both shells are perfect conductors, and a dielectric material
of dielectric constant ϵr > 1 fills the space between the two shells. The ca-
pacitor carries charge ±Q on the inner and outer shells, respectively.

(a) Find the displacement field D⃗ and the electric field E⃗, and graph the
magnitude of the electric field as a function of r, the distance to the center
of the sphere.

(b) Find the potential difference, V , between the two shells.

(c) Find the capacitance of the capacitor.

(d) At the limit ϵr → ∞, what will your solutions mean?

Solution:
(a) We use Gauss’s law to find the displacement field D⃗ which only depends

on the free charge in this problem. From the symmetry, D⃗ and E⃗ both only
have radial component. The integral form of Gauss’s law is∮

D⃗ · d⃗a = Qenc,

leading to

D = 0, (r < a, or r > b)

D =
Q

4πr2
, (a < r < b). (1)

And the electric field is therefore

E = 0, (r < a, or r > b)

E =
D

ϵ
=

Q

4ϵ0ϵrπr2
, (a < r < b). (2)

The plot of |E⃗| is given in the figure.

4



(b) The potential difference is given by

V = −
∫
E⃗ · d⃗l = −

∫ a

b

Q

4πϵ0ϵrr2
dr =

Q

4πϵ0ϵr

(
1

a
− 1

b

)
. (3)

(c) The capacitance is therefore

C =
Q

V
=

4πϵ0ϵrab

b− a
. (4)

(d) At the limit ϵr → ∞, the electric field becomes zero, and the potential
difference becomes zero. In this limiting case, the dielectric material becomes
a conductor!
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(EM3) A transmission line is made of a pair of long coaxial cylindrical shells
with the inner radius a and outer radius b. Both shells are conductors. The
electric field between the two conducting shells is found to be

E⃗ = E0(s) cos(kz − ωt)ŝ,

where s is the distance to the axis of the cables.

(a) From Gauss’s law, show that E0(s) = A0/s, where A0 is a constant.

(b) From Faraday’s law, find the magnetic field B⃗.

(c) Sketch the electric field lines and magnetic field lines at several loca-
tions along the cable, at t = 0.

(d) Find the Poynting vector, its magnitude and direction.

Note: the divergence and curl of a vector in cylindrical coordinates are given
by:

∇⃗ · A⃗ =
1

s

∂

∂s
(sAs) +

1

s

∂Aϕ

∂ϕ
+
∂Az

∂z
,

∇⃗ × A⃗ = ŝ

(
1

s

∂Az

∂ϕ
− ∂Aϕ

∂z

)
+ ϕ̂

(
∂As

∂z
− ∂Az

∂s

)
+ ẑ

[
1

s

∂

∂s
(sAϕ)−

1

s

∂As

∂ϕ

]
.

Solution:
(a) From Gauss’s law, ∇⃗·E⃗ = 0 in between the shells, we solve the differential
equation in cylindrical coordinates

1

s

∂

∂s
[sE0(s) cos(kz − ωt)] = 0,

leading to sE0(s) = A0, where A0 is a constant of the integral. Therefore,

E0(s) =
A0

s
.
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(b) Faraday’s law gives

∂B⃗

∂t
= −∇⃗ × E⃗ = kE0(s) sin(kz − ωt)ϕ̂,

solving which, we find the solution

B⃗ =
1

c

A0

s
cos(kz − ωt)ϕ̂.

Here c ≡ ω/k.

(c) E⃗ points radially between the two shells, and B⃗ is circular. At t = 0, the
magnitude of both varies by cos(kz), as illustrated in the figure.

(d) The Poynting vector is

S⃗ =
1

µ0

E⃗ × B⃗ =
A2

0

µ0cs2
cos2(kz − ωt)ẑ.

The Poynting vector is in ẑ direction, as expected.
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(ST1) Consider an ideal gas with molar density n, volume V , pressure P ,
and temperature T . The gas is composed of atoms that in the rest frame
emit light at a wavelength λ0. The wavelength of the emitted light from a
moving atom, λ, will be Doppler-shifted depending on its relative velocity
with respect to a detector as shown below.

Determine the full-width-at-half-max (FWHM) of the spectrum of light from
the ideal gas that is observed by the detector, and plot how it depends on
temperature. Consider only the effects of velocity in the x direction.

Note 1: The emission spectrum of the detected light is given as the spectral
power, Φ(λ), where the number of photons (per unit time), dNν , emitted at
a wavelength λ over the range dλ is:

dNν = Φ(λ) · dλ

Note 2: the FWHM of a peak is determined by calculating the separation
between the two points of the peak that have 1/2 of the max value.

Solution:

As provided in the note of the problem, the emission spectrum of the detected
light is given as the spectral power, Φ(λ) where the number of photons dNν

emitted at a given wavelength, λ over the range dλ is:

dNν = Φ(λ) · dλ (1)

Conceptually, the distribution of velocities of the atoms in the ideal gas leads
to a “spread” in emission wavelengths due to the Doppler shifts. Under the

2



approximation that Doppler shift is linear with velocity, the emission spec-
trum will be linearly proportional to the distribution of velocities in the
system, which follow the Maxwell-Boltzmann distribution.

Following the above rationale, the number of photons (dNν) at a wavelength
λ will proportional to the number of atoms dN moving with a velocity vx
that results in an appropriate Doppler shift:

dNν = CdN

where C is a constant of proportionality.

From the provided linear relationship for the Doppler shift, the velocity
needed to emit light at a wavelength λ is:

vx = c(
λ

λ0
− 1)

The distribution of the velocities of atoms in an ideal gas obeys the Maxwell-
Boltzmann distribution:

dN = (nV )

(
mβ

2π

)1/2

e−(mβ/2)v2xdvx

where β = 1/kBT .

From above, dvx can be expressed in terms of dλ:

dvx
dλ

=
c

λ0

dvx =
c

λ0
dλ

So, by replacing vx and dvx the number of atoms moving with an appropriate
velocity to emit light at λ is:

dN =
1

C
dNν = (nV )

(
mβ

2π

)1/2

e
(−mβ/2)(c( λ

λ0
−1))2 c

λ0
dλ (2)
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By comparing equations (1) and (2), one can determine an expression for the
spectral power of the emitted light from the gas:

Φ(λ) = Φ0e
(−mβ/2)(c( λ

λ0
−1))2

where Φ0 is the temperature-dependent maximum spectral power. For a
given temperature, this expression is just a Gaussian function that is cen-
tered at λ0. While Φ0 depends on temperature, the maximum value always
occurs at λ = λ0 and will not affect the determination of the FWHM.

Now, we just need to solve for λ1/2 using the condition Φ(λ1/2) = Φ0/2:

ln
1

2
= − m

2kBT
(c(

λ1/2
λ0

− 1))2

±
(
2kBT ln 2

mc2

)1/2

=
λ1/2
λ0

− 1

λ±1/2 = λ0 ± λ0

(
2kBT ln 2

mc2

)1/2

Then the FWHM of the emission spectrum is:

∆λ = λ+1/2 − λ−1/2

= 2λ0

(
2kBT ln 2

mc2

)1/2
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(ST2) The goal of this problem is to explain why prior to development of
quantum mechanics the heat capacity of diatomic gases was a puzzle. Let’s
assume we are dealing with nitrogen moleculeN2. The relevant degree of free-
dom is stretching motion along the molecule’s axis; neglect all other molecular
motions.

(a) Using the equipartition theorem, write the classical heat capacity of the
1-dimensional oscillators per 1 mole.

(b) Quantum mechanically, the spectrum En (n = 0, 1, 2 . . . ) of an oscillator
is determined by oscillation frequency ω. The oscillator is in thermal
equilibrium with thermostat at temperature T . What is the probability
to find the oscillator in state n?

(c) Find and sketch the expectation value of the N2 oscillator’s energy E
vs temperature. For nitrogen ℏω/kB ∼ 3500K.

(d) Using the sketch of E(T ), graphically determine the specific heat of N2

and explain what was missing in the classical picture at room temper-
ature ∼ 300K?

Solution:

(a) Using the equipartition theorem write the classical heat capacity of the
1-dimensional oscillators per 1 mole.

Average energy per one-dimensional oscillation degree of freedom is

E = kBT ⇒ C

1mole
= NA

∂E

∂T
= NAkB = R = 8.314 J/molK

- the gas constant. The classical heat capacity of a oscillator is inde-
pendent of temperature.

(b) Quantum mechanically, the spectrum En (n = 0, 1, 2 . . . ) of an oscillator
is determined by oscillation frequency ω. The oscillator is in thermal
equilibrium with thermostat at temperature T . What is the probability
to find the oscillator in state n?

The energy levels of an oscillator are

En = ℏω(n+ 1/2)
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and the distribution function (probability of finding oscillator in state
n) is

ρn =
1

Z
e−βEn where β ≡ 1/kBT

and the partition function is, using the geometric series summation,

Z =
∞∑
n=0

e−βEn = e−βℏω/2
∞∑
n=0

e−βℏωn = e−βℏω/2 1

1− e−βℏω

(c) Find and sketch the expectation value of the N2 oscillator’s energy E
vs temperature. For nitrogen ℏω/kB ∼ 3500K.

The average energy of the oscillator is

E =
∞∑
n=0

Enρn = − ∂

∂β
lnZ =

ℏω
2

+
ℏωe−βℏω

1− e−βℏω

=
ℏω
2

+
ℏω

eβℏω − 1

For small temperature T ≪ ℏω/kB we have

small T ⇒ βℏω ≫ 1 ⇒ E ≈ ℏω
2
+ℏωe−βℏω ≈ const =

ℏω
2

while for large temperature T ≫ ℏω/kB

large T ⇒ βℏω ≪ 1 ⇒ E ≈ ℏω
2

+
ℏω
βℏω

≈ 1

β
= kBT

- we get the classical result. See the sketch on the following page.

(d) Using the sketch, graphically determine the specific heat of N2 and
explain what was missing in the classical picture at room temperature
∼ 300K?

The specific heat is the derivative of E(T ). Graphically differentiating
the E(T ) curve, we get C(T ) ≈ 0 for T ≪ 3500 K, and classical con-
stant C ≈ R for T ≫ 3500 K. The discrete energy spectrum of quantum
oscillator leads to “freezing” out of vibrational degrees of freedom and
exponential reduction of the heat capacity - effect that is completely
missing in the classical treatment.
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(ST3) An air condition works by circulating a working fluid, which we can
approximate as an ideal gas, through a closed cycle of four steps: A–D. The
fluid begins the cycle at the same temperature as the indoor air, Tin. In step
A it is adiabatically compressed at entropy SA up to the temperature of the
outside air: Tout > Tin. In step B the working fluid exchanges heat with the
outside air at Tout. In step C it is adiabatically cooled at entropy SC going
from Tout → Tin. Finally, in step D the fluid at the same temperature as the
indoor air gains heat from it; this removes heat from the indoor air.

a. Draw a diagram in T vs. S space of the working fluid undergoing one
complete cycle. Label each of the steps A–D described above on the
diagram. Which step (or steps) require(s) a motor to do positive
work on the working fluid?

b. In terms of Tin, Tout, SA and SC , compute the heat removed from the
indoor air in step D.

c. Compute the net work done by the motor on the fluid over one com-
plete cycle. Assume it works perfectly by recovering all the work done
on it by the fluid.

d. Outside is Tout = 30◦ C, while indoors is kept at kept at a pleasant
Tin = 20◦ C. In a perfect system (i.e. part c.) the motor draws 500 W
of power. At approximately what rate is the air conditioner removing
heat from the indoor air?

Solution:

a. The cycle consists of two adiabatic legs, A and C and two isothermal
legs, B and D . The cycle thus forms a square in T vs. S space (see
below).

Leg D goes along Tin, taking SC → SA. Since heat is added to the
working fluid, SA > SC . In leg B that heat is expelled from the fluid
into the external environment as SA → SC . The cycle proceeds counter-
clockwise — the sense opposite of the traditional Carnot heat engine.
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For an ideal gas undergoing isothermal heating, dE ∝ dT = 0, so

dS =
p

T
dV = NR

dV

V
. (1)

Therefore compression, dV < 0, is accompanied by an entropy de-
crease, dS < 0, as in leg B.

For an adiabatic process, dS = 0, so the work done on the fluid is

dW = −pdV = dE = Cv dT . (2)

This means compression generates increasing T , as in leg A. Thus
positive work is being done on the working fluid, by some
motor, along legs A and B.

b. Differential heating is dQ = T dS, so the heat exchanged along leg D is
found from the integral

∆QD =

∫
D

T dS = Tin

∫
D

dS = Tin (SA − SC) . (3)

c. Since the working fluid returns to its initial state,
∮
dE = 0 after a

complete cycle, and the net work done on the fluid is

W = −
∮
p dV = −

∮
T dS = −

∫
B

T dS −
∫
D

T dS

= −Tout (SC − SA) − Tin (SA − SC) (4)

= (Tout − Tin) (SA − SC) ,
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which is the area inside the square circuit on the T vs. S diagram.

d. Over a single cycle the ratio of heat removal to work

∆QD

W
=

Tin
Tout − Tin

, (5)

depends only on the temperatures of legs B and D. Averaging over
whole cycles gives the heating rate〈

dQD

dt

〉
=

Tin
Tout − Tin

〈
dW

dt

〉
=

293K

10K
× 500W

≃ 15, 000W , (6)

for the values quoted. To do this one must convert Tin = 20◦C = 293K.
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