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(CM1) A periodically driven, damped harmonic oscillator of mass m and
spring constant k satisfies the equation

mẍ = −k x − mν ẋ + F0 cos(ωt) ,

where ν is a damping coefficient, and F0 and ω are the amplitude and fre-
quency of driving. The solution can be written in the form

x(t) = A cos
[
ωt − ϕ

]
,

where A and ϕ are both real and depend on the parameters of the problem.

a. Find an expression for A(ω) in terms of the parameters of the problem.

b. The figure below is a plot of A(ω) for values m = 0.1 kg, k = 0.9N/m,
ν = 0.5 s−1, and F0 = 0.45 N. Axes are scaled to Y and W . Use the
results of a. to write the values of Y and W in SI units (i.e. m, kg, s).

(Continued on next page)
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The figure below shows versions of A(ω) using the same values of Y and W
found in part b., but in each case one parameter has been changed.
Please match the appropriate figure to the cases described below. Write text
justifying your choice.

c. All parameters are the same as in b., except k = 0.1N/m.

d. All parameters are the same as in b., except ν = 1.0 s−1.
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(CM2) A particle of mass 3m is suspended from a fixed point O by a light
linear spring with spring constant k. A second particle of mass 2m is in turn
suspended from the first particle (the one of mass 3m) by a second spring
that is identical to the first spring. The system only moves in the vertical
direction and is subject to gravity.

a. Let y1 denote the distance of the first particle from the mounting point,
y2 represent the distance of the second particle from the first particle (as
shown in the sketch below) and l represent the relaxed spring length.
Using these coordinates, demonstrate that the Lagrangian is:

L =
3m

2
ẏ21+m(ẏ1+ẏ2)

2+3mgy1+2mg(y1+y2)−
1

2
k(y1−l)2−

1

2
k(y2−l)2

b. Find the equilibrium position of the two masses from the equation of
motion.
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(CM3) Consider a free sphere spinning about vertical axis with period T .
The sphere is solid, with mass M and radius R, and moment of inertia
I = (2/5)MR2. It has two point-like masses m initially sitting at each pole.
Gradually these masses “flow” from poles to the equatorial region to form
a single thin uniform ring around the entire equator, spinning together with
the sphere.
Find the period of the rotation in the new configuration. How do the ro-
tational energy and the angular momentum of the system change between
initial and final states? If they change, suggest a mechanism how this hap-
pens.

m

m

2m

M M

R
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(QM1) A spin 1/2 particle, with gyromagnetic ratio γ, is subject to a mag-
netic field B = B0ẑ giving it a Hamiltonian

Ĥ = −γB0 Ŝz . (1)

Sy is measured at t = 0 and found to be +ℏ/2.

a. Write the state |ψ(t)⟩ for t ≥ 0 in terms of normalized eigenstates of Ĥ.

b. Use the result of a. to compute ⟨Sx⟩ as a function of time for t ≥ 0.

The spin operators, expressed in | ↑⟩, | ↓⟩ basis, are given by

Ŝx =
ℏ
2

[
0 1
1 0

]
, Ŝy =

ℏ
2

[
0 −i
i 0

]
, Ŝz =

ℏ
2

[
1 0
0 −1

]
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(QM2) An electron is confined to a 2D infinite square well with infinite
potential barriers at x = −a/2, a/2 and y = −a/2, a/2. A weak perturbation
exists in the system of the following form:

Ĥ ′ = V0x̂ŷ

where V0 is a positive, real constant.

Determine how the perturbation changes the energies and wave functions of
the first two excited states to lowest order in V0.

Note: you may find some of the below integrals useful:∫ a/2

−a/2

cos
(π
a
x
)
x sin

(
2π

a
x

)
dx =

8a2

9π2∫ a/2

−a/2

cos

(
2π

a
x

)
x sin

(π
a
x
)
dx = −10a2

9π2∫ a/2

−a/2

sin

(
2π

a
x

)
x sin

(
2π

a
x

)
dx = − a2

8π
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(QM3) A quantum harmonic oscillator is prepared in a state

|ν⟩ = e−|ν|2/2
∞∑
n=0

νn√
n!
|n⟩ with ν =

√
Neiθ .

Here N and θ are arbitrary real numbers, and |n⟩ are the orthonormal eigen-
states of the oscillator Hamiltonian H = ℏω(a†a+ 1/2), with a†a|n⟩ = n|n⟩,
where a†, a are raising and lowering operators, with commutation relation[
a, a†

]
= 1.

(a) In terms of N , θ, what is the probability of finding the oscillator in
eigenstate n?

(b) Show that |ν⟩ is properly normalized. Recall Taylor expansion of the

exponential function ex =
∑∞

k=0
xk

k!
.

In the remaining questions use the fact that |ν⟩ is an eigenstate of operator
a (you don’t have to prove it):

a|ν⟩ = ν|ν⟩ and its adjoint ⟨ν|a† = ⟨ν|ν∗ .

Note that a acts to the right and a† acts to the left to get the eigenvalue
property.

(c) Find the expectation value Ē of energy measurement in state |ν⟩. Ex-
press it in terms of N , ω, ℏ.

(d) Find the variance σ2
E of energy measurement in state |ν⟩. Express it in

terms of N , ω, ℏ. (It’ll help to use the commutation relation to write
a†aa†a = a†a†aa + a†a so that all a can freely act to the right on |ν⟩,
and a† can act to the left on ⟨ν|).

(e) Based on (c) and (d), is |ν⟩ an energy eigenstate of the oscillator? Does
it agree with (a)? Using σE/Ē ratio argue whether |ν⟩ looks like an
eigenstate of the oscillator in the limit of small or large N?
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(EM1) A square loop with resistance R and side length l is pulled slowly
toward a region of uniform magnetic field with a constant speed v0. The
magnetic field has a strength B0 and is oriented orthogonal to the plane of
the loop. The width of the region with non-zero magnetic field is L, where
L = 2l. Assume that at time t = 0, the right edge of the loop is just about
to enter the magnetic field. Also assume that the self-inductance of the loop
is negligible.

(a) Determine the magnitude and direction of the electric current I in the
loop for all times. Plot the magnitude of the current as a function of time.

(b) Determine the total energy dissipated by the loop as it traverses through
the region with magnetic field.
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(EM2) A capacitor is made of a pair of concentric spherical shells of radius
a and b (a < b). Both shells are perfect conductors, and a dielectric material
of dielectric constant ϵr > 1 fills the space between the two shells. The ca-
pacitor carries charge ±Q on the inner and outer shells, respectively.

(a) Find the displacement field D⃗ and the electric field E⃗, and graph the
magnitude of the electric field as a function of r, the distance to the center
of the sphere.

(b) Find the potential difference, V , between the two shells.

(c) Find the capacitance of the capacitor.

(d) At the limit ϵr → ∞, what will your solutions mean?
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(EM3) A transmission line is made of a pair of long coaxial cylindrical shells
with the inner radius a and outer radius b. Both shells are conductors. The
electric field between the two conducting shells is found to be

E⃗ = E0(s) cos(kz − ωt)ŝ,

where s is the distance to the axis of the cables.

(a) From Gauss’s law, show that E0(s) = A0/s, where A0 is a constant.

(b) From Faraday’s law, find the magnetic field B⃗.

(c) Sketch the electric field lines and magnetic field lines at several loca-
tions along the cable, at t = 0.

(d) Find the Poynting vector, its magnitude and direction.

Note: the divergence and curl of a vector in cylindrical coordinates are given
by:

∇⃗ · A⃗ =
1

s

∂

∂s
(sAs) +

1

s

∂Aϕ

∂ϕ
+
∂Az

∂z
,

∇⃗ × A⃗ = ŝ

(
1

s

∂Az

∂ϕ
− ∂Aϕ

∂z

)
+ ϕ̂

(
∂As

∂z
− ∂Az

∂s

)
+ ẑ

[
1

s

∂

∂s
(sAϕ)−

1

s

∂As

∂ϕ

]
.
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(ST1) Consider an ideal gas with molar density n, volume V , pressure P ,
and temperature T . The gas is composed of atoms that in the rest frame
emit light at a wavelength λ0. The wavelength of the emitted light from a
moving atom, λ, will be Doppler-shifted depending on its relative velocity
with respect to a detector as shown below.

Determine the full-width-at-half-max (FWHM) of the spectrum of light from
the ideal gas that is observed by the detector, and plot how it depends on
temperature. Consider only the effects of velocity in the x direction.

Note 1: The emission spectrum of the detected light is given as the spectral
power, Φ(λ), where the number of photons (per unit time), dNν , emitted at
a wavelength λ over the range dλ is:

dNν = Φ(λ) · dλ

Note 2: the FWHM of a peak is determined by calculating the separation
between the two points of the peak that have 1/2 of the max value.
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(ST2) The goal of this problem is to explain why prior to development of
quantum mechanics the heat capacity of diatomic gases was a puzzle. Let’s
assume we are dealing with nitrogen moleculeN2. The relevant degree of free-
dom is stretching motion along the molecule’s axis; neglect all other molecular
motions.

(a) Using the equipartition theorem, write the classical heat capacity of the
1-dimensional oscillators per 1 mole.

(b) Quantum mechanically, the spectrum En (n = 0, 1, 2 . . . ) of an oscillator
is determined by oscillation frequency ω. The oscillator is in thermal
equilibrium with thermostat at temperature T . What is the probability
to find the oscillator in state n?

(c) Find and sketch the expectation value of the N2 oscillator’s energy E
vs temperature. For nitrogen ℏω/kB ∼ 3500K.

(d) Using the sketch of E(T ), graphically determine the specific heat of N2

and explain what was missing in the classical picture at room temper-
ature ∼ 300K?
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(ST3) An air condition works by circulating a working fluid, which we can
approximate as an ideal gas, through a closed cycle of four steps: A–D. The
fluid begins the cycle at the same temperature as the indoor air, Tin. In step
A it is adiabatically compressed at entropy SA up to the temperature of the
outside air: Tout > Tin. In step B the working fluid exchanges heat with the
outside air at Tout. In step C it is adiabatically cooled at entropy SC going
from Tout → Tin. Finally, in step D the fluid at the same temperature as the
indoor air gains heat from it; this removes heat from the indoor air.

a. Draw a diagram in T vs. S space of the working fluid undergoing one
complete cycle. Label each of the steps A–D described above on the
diagram. Which step (or steps) require(s) a motor to do positive
work on the working fluid?

b. In terms of Tin, Tout, SA and SC , compute the heat removed from the
indoor air in step D.

c. Compute the net work done by the motor on the fluid over one com-
plete cycle. Assume it works perfectly by recovering all the work done
on it by the fluid.

d. Outside is Tout = 30◦ C, while indoors is kept at kept at a pleasant
Tin = 20◦ C. In a perfect system (i.e. part c.) the motor draws 500 W
of power. At approximately what rate is the air conditioner removing
heat from the indoor air?

4


