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(CM1) A particle of massm is confined to motion along the +x axis, subject
to a potential

V =
a

x
+

b

x2
,

where a and b are real constant.

(a) Graph the potential; consider how the shape of the potential varies for
all combinations of signs of a and b. Note which choices of signs have
equilibrium solutions.

(b) For each sign choice that admits an equilibrium, find all possible equi-
librium positions.

(c) For one of the cases admitting a stable equilibrium, find the frequency
of small oscillation around the equilibrium.

Solution:

(a) See the graph for the four situations.

Equilibrium occurs at where the potential has a peak or valley, or when
a and b have opposite signs.

(b) The condition for equilibrium is

V ′ ≡ dV

dx
= − a

x2
− 2b

x3
= 0,
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leading to x0 = −2b/a, or x0 = ∞. The equilibrium is either at infinity
when particle is free from the potential (trivial solution), or it is at −2b/a
only when b and a have opposite signs, since x0 > 0.

(c) To find the stability, we evaluate

V ′′ ≡ d2V

dx2
=

2a

x3
+

6b

x4
=

a4

8b3

at x0. If a > 0, b < 0, V ′′ < 0, the equilibrium is not stable. If a < 0, b > 0,
V ′′ > 0, the equilibrium is stable (potential well), as shown in the figure. For
the stable equilibrium, the frequency of the oscillation around the equilibrium
is

ω2 =
V ′′

m
=

a4

8mb3
.

This can be also derived by a force analysis. The force is given by F (x) =
−V ′(x) = mẍ. At equilibrium x = x0, F (x0) = mẍ0 = 0. We may expand
the force around the equilibrium given a small perturbation x = x0 + x1:
F (x) = F (x0) + F ′(x0)x1 = F (x0) − V ′′(x0)x1 = mẍ0 + mẍ1. Applying
the equilibrium condition F (x0) = mẍ0 = 0, we get mẍ1 + V ′′(x0)x1 = 0.
At stable equilibrium, V ′′(x0) > 0, the net force is a restoring force, and the
solution to the second-order linear differential equation is an oscillation, with
the frequency given above.
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(CM2) A block of mass M can move left-right without friction. Identical
springs, of spring constant k and rest length ℓ0, connect the block to hard
walls separated by distance L > 2ℓ0. An ideal simple pendulum, consisting
of a massless rod of length length ℓ and a small bob of mass m = M/2, is sus-
pended from the block — it swings in the plane of the diagram. Parameters
are related as follows

M = 2m ,
g

ℓ
=

k

m
= ω2

0

The system is initially positioned at rest in the configuration depicted in
the figure. The block is at its midpoint and the pendulum is deflected from
the vertical by angle α0 ≪ 1. At t = 0 the block and pendulum are released
from rest.

(a) Define a set of generalized coordinates. Use these to write the full
potential and kinetic energies of the system, without assuming small
angles.

(b) Assuming small perturbations, find the complete set of normal modes
and eigenfrequencies of the system.

(c) Using the normal modes, find the position of the block for all times
t > 0.

α
0

M

kk

l

m

g

Solution:
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(a) Use coordinates (x, θ), where x is the horizontal position of the block,
with x = 0 being midway between the walls, and θ is the angle of the pendu-
lum bar from vertical. In these coordinates the pendulum bob is at position

xbob = x+ ℓ sin θ , ybob = − ℓ cos θ .

The potential energies of the two components are

Vb(x) = 1
2
k
[
(L/2− x)− ℓ0

]2
+ 1

2
k
[
(L/2 + x)− ℓ0

]2
= k (L/2− ℓ0)

2 + k x2 (1)

Vp(θ) = mg ybob = −mgℓ cos θ (2)

The total potential energy is the sum of the components

V (x, θ) = Vb + Vp = k (L/2− ℓ0)
2 + k x2 −mgℓ cos θ (3)

The kinetic energy of the block is simply Tb = 1
2
M ẋ2. The velocity

components of the bob are

ẋbob = ẋ+ θ̇ ℓ cos θ , ẏbob = − θ̇ ℓ sin θ ,

so its kinetic energy is

Tp = 1
2
m

[
ẋ+ θ̇ ℓ cos θ

]2
+ 1

2
m

[
θ̇ ℓ sin θ

]2
= 1

2
mẋ2 + mℓ ẋ θ̇ cos θ + 1

2
mℓ2 θ̇2 (4)

The total kinetic energy is the sum of these two contributions

T = Tb + Tp = 1
2
(M +m) ẋ2 + mℓ ẋ θ̇ cos θ + 1

2
mℓ2 θ̇2 (5)

(b) The equilibrium position, (x, θ) = (0, 0), can be verified by evaluating
first derivatives of the potential, given in eq. (3), at that point

∂V

∂x
= 2kx = 0 ,

∂V

∂θ
= mgℓ sin θ = 0 (6)

The potential matrix V is found from second derivatives after evaluation at
equilibrium

V =


∂2V

∂x2

∂2V

∂x ∂θ

∂2V

∂x ∂θ

∂2V

∂θ2

 =

[
2k 0
0 mgℓ

]
(7)
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The mass matrix M is found from the second derivatives of T , given in eq.
(5), and evaluating at equilibrium θ = 0

M =


∂2T

∂ẋ2

∂2T

∂ẋ ∂θ̇
∂2T

∂ẋ ∂θ̇

∂2T

∂θ̇2

 =

[
3m mℓ
mℓ mℓ2

]
(8)

after using the fact that M = 2m

Normal modes are found by solving the equation(
V − ω2M

)
· ρ⃗ = 0 . (9)

Non-trivial solutions occur only if the determinant of the matrix vanishes

det(V − ω2M
)

=

∣∣∣∣ 2k − 3mω2 −ω2mℓ
−ω2mℓ mgℓ− ω2mℓ2

∣∣∣∣
= m2

∣∣∣∣ 2ω2
0 − 3ω2 −ω2ℓ
−ω2ℓ ω2

0ℓ
2 − ω2ℓ2

∣∣∣∣ = m2ℓ2
[
(2ω2

0 − 3ω2)(ω2
0 − ω2)− ω4

]
= m2ℓ2

[
2ω4 − 5ω2

0ω
2 + 2ω4

0

]
= 0 ,

after replacing k = mω2
0 and g = ℓω2

0. The two solutions to this quadratic

ω2
1 = 1

2
ω2
0 , ω2

2 = 2ω2
0 , (10)

can be readily verified.

The normal mode vectors, ρ⃗(s), are found by placing ω2
s into equation (9).

The general solution is found from the top row

ρ2
ρ1

= − V11 − ω2M11

V12 − ω2M12

=
2k − 3mω2

mℓω2
=

1

ℓ

(
2
ω2
0

ω2
− 3

)
(11)

The set of eigenfrequencies and normal mode vectors is

ω2
1 = 1

2
ω2
0 , ρ⃗(1) =

[
ℓ
1

]
(12)

ω2
2 = 2ω2

0 , ρ⃗(2) =

[
ℓ
−2

]
(13)
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(c) Since the system begins at rest, the general solution can be written[
x(t)
θ(t)

]
= A ρ⃗(1) cos(ω1t) + B ρ⃗(2) cos(ω2t) (14)

Evaluating the top row at t = 0 and using the fact that x(0) = 0 gives
A = −B. We use this in the bottom row evaluated at t = 0 to obtain

θ(0) = α0 = A − 2B = 3A , (15)

meaning A = −B = α0/3. Using this in the general expression for the top
row yields the full solution

x(t) =
α0ℓ

3

[
cos

(
ω0t/

√
2
)

− cos
(√

2ω0t
) ]

. (16)

(check) As one sanity check we can expand the solution at early times

x(t) ≃ α0ℓ

3

[
1− 1

2

(
ω0t√
2

)2

+ · · · − 1 +
1

2
(
√
2ω0t)

2 − · · ·

]

=
α0ℓ

3

[
−1

2

ω2
0t

2

2
+

1

2
2ω2

0t
2
]

= 1
4
α0ℓ ω

2
0t

2 = 1
4
α0 g t

2

The block therefore initially accelerates rightward at ẍ ≃ α0g/2. This is
due to a force

Fb = M ẍ = 2mẍ ≃ α0mg .

This is equal and opposite to the horizontal force initially exerted on the bob.
At this early stage, the springs are not yet exerting a force on the block.
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(CM3) A bowling ball of mass M and radius R is tossed onto a bowling lane
so that it is initially sliding with velocity v0 with no rotation. The lane has
a coefficient of kinetic friction of µ and the ball is uniform, so the moment
of inertia about its center is I = (2/5)MR2.

(a) Find the equation describing the ball’s time-dependent linear velocity
as it is sliding.

(b) Find the equation describing the ball’s angular velocity as it is sliding.

(c) Determine the distance the ball travels before it begins to roll without
slipping and find its speed at that time.

Solution:

(a) The linear motion is governed by constant acceleration due to friction
a = −µg. The linear velocity is therefore

v(t) = v0 − µg t . (1)

(b) The friction exerted on the bottom of the ball, creates a torque which
changes the angular momentum about its center according to

µMgR =
dL

dt
=

2

5
MR2α .

The result is constant angular acceleration α = 5µg/2R. The angular veloc-
ity, initially ω = 0, is therefore

ω(t) =
5µg

2R
t . (2)

(c) Sliding motion stops when the tangential speed of the ball, vt = ωR,
matches the ball’s linear speed. This occurs when

v0 − µgt =
5

2
µgt (3)

at time t = 2v0/7µg. The linear velocity at that time is found by substituting
this expression into eq. (1).

vf = v0 − µg

(
2v0
7µg

)
=

5

7
v0 . (4)
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The total distance it has travelled after this time is

D =

t∫
0

v(t′) dt′ = v0t− 1
2
µg t2 =

12

49

v20
µg

. (5)
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(QM1) Plotted on the following page are five 1D potentials labeled P1- P5
and seven spectra of bound states labeled S1-S7. The vertical and horizontal
axes on all plots are the same. Ellipses on the spectra mean the states
continue as E → ∞

(a) For each potential, identify which spectrum describes the system. Briefly
justify each assignment. You may only use a spectrum once.

For the next two questions, label all axes and indicate the zeros for the
x-axis and the y-axis. Within reason, be as descriptive as possible with
your plots.

(b) For potential P5, sketch the wave function of the first excited state.
Assume the potential is deep enough to have multiple bound states.

(c) For your answer in part (b), sketch the probability density for the po-
sition of the particle.
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Solution:

(a) Identification of the spectra:
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• P1 → S7: infinite square well has a infinite number of bound states
with E > 0. States are spaced quadratically.

• P2 → S4: the quantum harmonic oscillator has an infinite number of
bound states that are separated by ℏω, where ω is the characteristic
frequency of the harmonic potential. Both P2 and P3 are quantum har-
monic oscillator potentials, and both S4 and S5 show an infinite number
states separated by a constant energy. The characteristic frequency of
P2 (ω2) is smaller than that of P3 (ω3), so the appropriate spectrum for
P2 is the spectrum where the states are separated by a smaller amount
of energy.

• P3 → S5: see above discussion for P2.

• P4 → S2 the attractive delta potential as a single bound state with
E < 0

• P5 → S1: finite square wall has a finite number of bound states. All
states have E < 0

(b) The wave function of the first excited state of the finite square well in P5
has two primary features:

• One node at the center of the well.

• Exponential decay of the wave function into the classically forbidden
region where E < V (x)

Taking these features into account, the wave function will have the form:

4



where the vertical dash lines mark the classically forbidden regions.

(c) The probability density is the square magnitude of the wave function in
part (b):
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(QM2) A photon can be in two polarization states |v⟩ and |h⟩, for vertical
and horizontal. A photon with frequency ω enters a device that has vertical
filters on both ends. Inside the device the photon polarization’s behavior is
governed by Hamiltonian (in the |v⟩ , |h⟩-basis)

H = ℏν
(
1 −i
i 1

)
where ν is a constant with dimension of 1/sec. It takes time τ for the photon
to go from one end of the device to the other. What is the probability that
the photon will come out from the other end of the device?

Solution:

The time evolution of any photon state, written in the vertical-horizontal
basis states,

|Ψ, t⟩ = c1(t) |v⟩+ c2(t) |h⟩ ≡ (|v⟩ , |h⟩)
(
c1(t)
c2(t)

)
,

(
c1(t)
c2(t)

)
≡ C(t)

is found by decomposing it into eigenvectors of the Hamiltonian

H = ℏν
(
1 −i
i 1

)
The eigenvectors and eigenvalues of the matrix(

1 −i
i 1

)
can be found using the standard technique, which is left as an exercise, to
check yourself. We will be a little more fancy here and notice that this matrix
is actually a sum of unity matrix and one of the Pauli matrices:

1̂ + σ̂y

Any vector is an eigenvector of unity matrix with eigenvalue 1, whereas the
y-Pauli matrix has eigenvalues ±1 with the corresponding eigenvectors

C+ =
1√
2

(
1
i

)
and C− =

1√
2

(
1
−i

)
6



Thus, the Hamiltonian has these eigenvalues

HC+ = ℏν(1̂ + σ̂y)C+ = ℏν(1 + 1)C+ = 2ℏνC+

HC− = ℏν(1̂ + σ̂y)C− = ℏν(1− 1)C− = 0C−

and corresponding time evolution

iℏ
∂

∂t
C+ = 2ℏνC+ ⇒ C+(t) = C+(0)e

−i2νt

iℏ
∂

∂t
C− = 0 ⇒ C−(t) = C−(0)

The initial state is

C(0) =

(
1
0

)
=

1√
2
(C+ + C−)

that after time t becomes

C(t) =
1√
2
(C+e

−i2νt + C−) =
1

2

(
e−i2νt + 1
ie−i2νt − i

)
= e−iνt

(
cos νt
sin νt

)
Probability to find photon in state with vertical polarization after time τ

is
cos2 ντ
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(QM3) A particle of mass m is contained in a one-dimensional, symmetric
square well:

V0(x) =

{
0 , |x| < L
∞ , |x| > L

(1)

(a) Write down the complete set of energy levels, En, and normalized
energy eigenstates, φn(x) for the particle.

(b) The particle is subject to a an additional, small perturbing potential

V1(x) = a δ(x) , (2)

where a is a constant and δ(x) is the Dirac-delta function. Use pertur-
bation theory to write down the first order perturbations to the lowest
three energy levels.

(c) Find a transcendental equation which is satisfied by the exact solutions
En for the perturbed system (i.e. do not use perturbation theory). The
equation can be for a variable related to En.

Solution:

(a) Eigenstate φn(x) must satisfy Schoedinger’s equation

− ℏ2

2m
φ′′
n = En φn , (1)

subject to boundary conditions φn(±L) = 0. Solutions satisfying the left
boundary condition is readily written as

φn(x) = An sin
[
kn (x+ L)

]
, En =

ℏ2

2m
k2
n . (2)

The right boundary condition

φn(2L) = An sin(2Lkn) = 0 , (3)

can be satisfied for kn = nπ/2L, for n = 1, 2, 3, · · · . Normalization requires

L∫
−L

∣∣∣φn(2L)
∣∣∣ dx = |An|2

L∫
−L

sin2
[
kn (x+ L)

]
dx

= |An|2 L = 1 (4)
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This is satisfied by An = L−1/2. The wave functions and energies are therefore

φn(x) =
1√
L

sin
[ nπ

2L
(x+ L)

]
, En =

π2ℏ2

8mL2
n2 . (5)

A trigonometric identity can be used to express the eigenfunction

φn(x) =
1√
L


cos

(nπ
2L

x
)

, n odd

sin
(nπ
2L

x
)

, n even

(6)

(b) The first order perturbation to energy level En is simply found through

∆En =

L∫
−L

v1(x) |φn(x)|2 dx =
1

L

L∫
−L

V1(x) sin
2[kn(x+ L)] dx . (7)

Substituting V1(x) = aδ(x) yields

∆En =
a

L
sin2(knL) =

a

L
sin2(nπ/2) =

{
a/L , n odd
0 , n even

(8)

(c) The full Schroedinger’s equation is

− ℏ2

2m
φ′′
n(x) + aδ(x)φn(0) = En φn(x) (9)

If φn(0) = 0, this is identical to eq. (1), whose solutions are given in eq.
(5). Solutions with even n do have φn(0) = 0, and are therefore also exact
solutions of the perturbed eq. We can restrict further consideration to cases
where φn(0) ̸= 0. In this case, the solutions to eq. (9) for x ̸= 0, which are
continuous at x = 0, and satisfy boundary conditions at x = ±L, can be
written

φn(x) = sin
[
kn(L− |x|)

]
, En =

ℏ2

2m
k2
n (10)

Integrating eq. (9) across an infinitesimal interval containing x = 0 gives

− ℏ2

2m

[[
φ′
n

]]
x=0

+ aφn(0) = 0 (11)
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Substituting expression (10) gives

ℏ2

2m
2kn cos(knL) + a sin(knL) = 0 . (12)

Provided φn(0) = sin(knL) ̸= 0 this can be recast as a transcendental equa-
tion for kn — a variable related to En through eq. (10).

knL cot(knL) = − maL

ℏ2
(13)

(check) In the case a is small we can expand kn and En

kn =
nπ

2L
+ ∆kn (14)

En =
ℏ2

2m

[(nπ
2L

)2

+ 2
(nπ
2L

)
∆kn

]
(15)

Substituting into eq. (13) gives a contribution at first order

−L
(nπ
2L

) 1

sin2(nπ/2)
∆kn = − maL

ℏ2
(16)

Using the fact that n is odd, this gives

∆kn =
2maL

nπℏ2
. (17)

Placing this into eq. (15) gives

∆En =
ℏ2

m

(nπ
2L

)
∆kn =

a

L
, (18)

in agreement with first order perturbation theory for odd n.
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(EM1) A large thin dielectric slab of permittivity ϵ, area A, and thickness d

(d ≪
√
A) is placed in an otherwise uniform electric field E⃗0, and the angle

between E⃗0 and the slab plane is α, see the Figure.

(a) Find the electric field E⃗in inside the slab, ignoring edge effects.

(b) Find the bound charges.

(c) Find the total dipole moment of the entire slab. Compute the angle
between the dipole moment and the normal to the slab’s surface.

Solution:

(a) In this problem, we apply boundary conditions to find the electric field

inside and outside the slab. Set up the coordinate system so that E⃗0 =
E0 cosαx̂ + E0 sinαŷ. First consider α = 0, then all bound charges are at
the far edges and will not affect electric field both inside and immediately
outside the slab. In the case α = π

2
, the polarization generates uniform bound

charges of opposite signs on the top and bottom surfaces, which reduces the
electric field inside but does not change the field outside. Therefore, the
electric field outside is the same

E⃗out = E⃗0 = E0 cosαx̂+ E0 sinαŷ.

For the electric field inside, as discussed above, the horizontal component
does not change: Ex,in = Ex,out = E0 cosα – this satisfies the boundary
condition that the tangential component of the electric field is continuous
across the boundary. The normal component is derived with the boundary
conditionDy,out = ϵ0Ey,out = Dy,in = ϵEy,in, leading to Ey,out = (ϵ0/ϵ)E0 sinα
– electric field is reduced because of the polarized dielectric. Therefore,

E⃗in = E0 cosαx̂+
ϵ0
ϵ
E0 sinαŷ.
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(b) The polarization is given by P⃗ = (ϵ− ϵ0)E⃗in; ignoring the far edges, the
bound charge on the top and bottom surface of the slab is given by

σb = n̂ · P⃗ = ±ŷ · P⃗ = ±ϵ0

(
1− ϵ0

ϵ

)
E0 sinα.

Positive (negative) bound charges are on the top (bottom), as should be the
case. We can check that the electric field inside the material is reduced by
the bound charge:

Ey,in = E0 sinα− |σb|
ϵ0

=
ϵ0
ϵ
E0 sinα,

as derived in (a).

(c) The polarization P⃗ is the dipole moment per unit volume. The total
dipole moment is therefore

p⃗ = P⃗ A d = (ϵ− ϵ0) dA E⃗in

=
(
1− ϵ0

ϵ

)
dAE0

[
ϵ cosα x̂+ ϵ0 sinα ŷ

]
.

The angle θp between p⃗ and the normal, ŷ, has tangent

tan θp =
px
py

=
ϵ

ϵ0
cotα .
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(EM2) We have a thin wire loop given by x2 + y2 = a2. A small permanent
magnet of dipole moment m is placed at (s, 0, 0) with s ≫ a. The loop has
resistance R and negligible self-induction. Initially there is no current in the
loop, and the magnet is pointing along the z-axis. The magnet is then slowly
(quasi-statically) rotated to point in the opposite direction:

mẑ → −mẑ.

(a) Find the total charge that passes through a certain cross-section of the
loop wire in this process.

(b) Show that under the assumptions given above the answer does not de-
pend on the exact way the magnet is rotated, but only on its initial and
final orientations.

Solution:

m

a

n

The changing magnetic flux through the circular loop will induce a current
in the loop. Let’s choose the normal to the loop’s surface area to point up,
so that positive circulation direction is as shown in the figure.

The equation for the current is resistive voltage drop is due to the sum
of all EMF (equations in Gaussian units)

RI(t) = E = −1

c

dΦ

dt
(no 1/c for SI)

where Φ(t) is the total flux through the loop at time t. In this problem the
flux is due to the external flux of the magnet’s field, and self-flux due to the
flowing current in the loop:

Φ(t) = Φm(t) + cLI(t) ≈ Φm(t)

4



Due to the assumption of small self-induction L, we can neglect the final
contribution. (If we don’t, we would need to solve a differential equation to
find the current as function of time, which is left as a good exercise for you.)
So we get

RI(t) = −1

c

d

dt
Φm(t)

and the total charge that passes through some point of the loop is

Q =

∫ +∞

−∞
I(t)dt = − 1

cR

[
Φm(+∞)− Φm(−∞)

]
.

This show that the answer does not depend on the exact rotation of the mag-
net, but only on initial and final orientation of the magnet. Since the magnet
is flipped the final flux is the opposite of the initial flux Φi = Φm(−∞) =
−Φm(+∞), and so we have

Q =
2Φi

cR

To find the initial flux we use the dipole field at the origin

B(0) =
3(m · r̂)r̂ −m

r3
= −mẑ

r3

∣∣∣∣∣
r=s

(in SI, add overall factor µ0/4π)

Since the magnet is far away, we simply dot-multiply area and induction
strength:

Φi ≈ A ·B(0) = −πa2
m

s3

with the final answer

Q = −2πa2

s3
1

c

m

R

(
1

c
→ µ0

4π
for SI answer

)
where the negative sign means the current in the loop flows in the negative
direction. It is expected since the induced current on average will try to
maintain the same flux according to the Lenz law.
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(EM3) An electromagnetic plane wave, incident on a planar interface, has
wave vector

ki = k0x̂ + 2k0ẑ , (1)

where k0 > 0. The wave is incident from a half-space of vacuum, z < 0, while
the other half-space, z > 0, is filled with a linear dielectric, ϵ = 2ϵ0. (Both
sides have permeability µ0). The wave is polarized in the plane of incidence,
and at the origin the electric field of the incident wave is

Ei(0, t) = E0

(
2x̂− ẑ

)
cos(ωt) , (2)

where E0 > 0 and ω = c|ki|.

(a) Write down full expressions for the incident electric andmagnetic field
for all points in the vacuum and all times. Express the amplitude of the
magnetic field in terms of E0 and other constants given in the problem.

(b) Write down full expressions for both the transmitted and reflected
electric fields in their respective spatial domains. Use the jump condi-
tions across the interface to express all component amplitudes in terms
of only E0.

(c) Write down the surface charge density, if any, within the z = 0 surface.

Solution:

(a) The incident plane wave must depend on space and time through the
combination

ki · x− ωt = k0x+ 2k0z − ωt .

This expression can be used in place of −ωt in the expression at the origin
to obtain

Ei(x, z, t) = E0

(
2x̂− ẑ

)
cos(k0x+ 2k0z − ωt) . (1)

Faraday’s law stipulates that

∂

∂t
Bi = −∇× E =

(
∂Ei,z

∂x
− ∂Ei,z

∂x

)
ŷ

= 5E0k0 ŷ sin(k0x+ 2k0z − ωt) .
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The solution to this is

Bi(x, z, t) =
5E0k0
ω

ŷ cos(k0x+ 2k0z − ωt) . (2)

As a quick check we note that |ki| =
√
5k0 and |Ei| =

√
5E0. The magnitude

of the magnetic field is

|Bi| =
5E0k0
ω

=
|ki| |Ei|

ω
=

|Ei|
c

as expected in a vacuum.

(b) The wave speed in the dielectric is

ω

|kt|
=

c√
ϵ/ϵ0

=
c√
2

=
ω√
2|ki|

=
ω√
10 k0

,

meaning |kt| =
√
10 k0. kt must lie in the same plane, the plane of incidence,

the tangential components should match, kt,x = ki,x = k0, and the wave
vector should point away from the interface, kt,z > 0. Taken together we get

kt = k0x̂ + 3k0ẑ . (3)

To assure that kt · Et = 0, the transmitted electric field can be written

Et(x, z, t) = Et,0

(
3x̂− ẑ

)
cos(k0x+ 3k0z − ωt) (4)

for some amplitude Et,0.

The reflected wave vector should reflect the ẑ component of ki, and main-
tain the x̂ component, so

kr = k0x̂− 2k0ẑ . (5)

Through the same considerations above, we can write the reflected electric
field

Er(x, z, t) = Er,0

(
2x̂+ ẑ

)
cos(k0x− 2k0z − ωt) , (6)

for some amplitude Er,0.

The tangential component of the electric field, namely Ex, must be con-
tinuous across the interface. Combining the x̂ components of eqs. (1), (4)
and (6), at z = 0, gives

2E0 + 2Er,0 = 3Et,0 . (7)
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Since there is no free charge at the interface, the normal component of
D = ϵE must be continuous across it. Summing the ẑ components of eqs.
(1), (4) and equating this to ϵ/ϵ0 = 2 times the ẑ of eq. (6), at z = 0, gives

−E0 + Er,0 = − 2Et,0 . (8)

Using this to eliminate Er,0 from eq. (7) gives

Et,0 =
4

7
E0 , Er,0 = E0 − 2Et,0 = − 1

7
E0 .

Placing this into eqs. (4) and (6) gives

Et(x, z, t) =
4E0

7

(
3x̂− ẑ

)
cos(k0x+ 3k0z − ωt) , (9)

Er(x, z, t) = −E0

7

(
2x̂+ ẑ

)
cos(k0x− 2k0z − ωt) , (10)

Ei(x, z, t) = E0

(
2x̂− ẑ

)
cos(k0x+ 2k0z − ωt) ,

where eq. (1) is repeated for completeness.

(c) The surface charge density at z = 0 is

σ = ϵ0

[
Ez(z = 0+) − Ez(z = 0−)

]
(11)

= ϵ0E0

(
−4

7
+ 1 + 1

7

)
cos(k0x− ωt) = 4

7
ϵ0E0 cos(k0x− ωt)

An alternative calculation uses the electric polarization

P = D− ϵ0E = (ϵ− ϵ0)E . (12)

Inside the dielectric ϵ = 2ϵ0 leading to

P =
4ϵ0E0

7

(
3x̂− ẑ

)
cos(k0x+ 3k0z − ωt)Θ(z) , (13)

where Θ is the Heaviside function. Bound charge is found from

ρb = −∇ ·P = 4
7
ϵ0E0 cos(k0x− ωt) δ(z) . (14)
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(ST1) The photon gas is used as a working medium in Carnot engine. The
equation of state for the gas is

PV =
1

3
E , E = aV T 4

where P is pressure, V - volume, E - internal energy T - temperature and a
- is a parameter made up from the universal constants.

(a) Plot the Carnot cycle in ST (entropy-temperature) coordinates and
indicate on the plot the part that corresponds to the adiabatic com-
pression of the gas.

(b) If the initial volume was Vi find the final volume of the gas after this
compression; find the work done on the gas in this process.

(c) Use the first law of thermodynamics and the plot in part (a) to calculate
work done by the engine in one full cycle, and find the engine’s efficiency.
Is it different from efficiency of Carnot engine that has usual gas as
working medium? How?

Recall:

Carnot engine takes heat from reservoir at T2 and releases heat into reser-
voir at T1. Between heat exchange processes are adiabatic compression and
expansion.

Efficiency is the ratio of work done by the engine and the heat supplied to
the engine, during one cycle.

Solution:

T
2

T
1

S
2

S
1

S

T

CD

A B
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(a) The Carnot cycle is shown in the figure. For the engine that produces
positive work, we go A → B → C → D → A. The adiabatic compres-
sion happens during AB part. (S = const, and temperature increases).

(b) From the first law we have

dE + PdV = TdS = 0

We plug in the given energy and pressure: (pressure is sufficient)

dE +
1

3

E

V
dV = 0 ⇒ E3V = const ⇒ V 4T 12 = const

Simplifying powers, for the AB part we get

VfT
3
2 = ViT

3
1 ⇒ Vf = Vi

(
T1

T2

)3

The work done on the gas in this adiabatic part is given by the change
in energy of the system

WAB = EB − EA = aVfT
4
2 − aViT

4
1 = aViT

3
1 (T2 − T1)

(c) The work done in the full cycle is given by the closed integral

W =

∮
PdV =

∮
(TdS − dE)

where we used the first law dE = −PdV + TdS. The last part is zero
because E is function of state and simply gets back to its initial value
after going over the closed contour. The first part of the integral is the
area under the curve in TS coordinates, or the difference of heat in and
out of the system:

W =

∮
ABCD

TdS = Qin −Qout = (S2 − S1)(T2 − T1)

The cycle direction A → B → C → D → A gives the positive work W .
The heat supplied to the system during BC process

Qin = T2(S2 − S1)

The efficiency is

η =
W

Qin

= 1− Qout

Qin

= 1− T1

T2

- the same as for any other working medium.
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(ST2) Consider a system of a large number N = n1 + n2 of two-level ‘parti-
cles’. n1 particles are in the state with energy E1 and n2 particles are in the
state with energy E2. The system is connected to a heat reservoir that is held
at temperature T . The system of N particles undergoes a change where one
particle transitions from the state with energy E1 to the state with energy
E2:

n1 → n1 − 1

n2 → n2 + 1

(a) For this process calculate the change in entropy to the system of N
particles in terms of N , n1, and n2.

(b) Calculate the change in entropy to the heat reservoir due to the heat
transferred from the particles to the heat reservoir.

(c) From (a) and (b), derive the Boltzmann relation for the ratio n1/n2.
(i.e. derive it using answers to (a) and (b) without assuming it in ad-
vance.)

Small hint: For large n, n ± 1 ≈ n, and you might or might not need the
Stirling’s approximation lnn! ≈ n lnn− n.

Solution:

(a) Calculate the change in entropy to the system of N particles

The entropy of the system of particles, S, can be expressed as:

S = kB lnΩ (1)

where kB is the Boltzmann constant and Ω is the total number of microstates
of the system.

The number of microstates of the system before the change is:

Ω0 =
N !

n1!n2!
(2)
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And after the change,

Ω1 =
N !

(n1 − 1)!(n2 + 1)!
(3)

The change in entropy to the system of particles is then:

∆Sparticles = kB lnΩ1 − kB lnΩ0 = kB ln(Ω1/Ω0)

= kB ln
n1!n2!

(n1 − 1)!(n2 + 1)!
(4)

∆Sparticles = kB ln
n1

n2 + 1
(5)

(b) Calculate the change in entropy to the heat reservoir

The change in the entropy of the heat reservoir can be determined with the
second law of thermodynamics:

∆SHR =
∆EHR

T
(6)

where ∆EHR is the change in energy of the heat reservoir and T is the the
temperature.

The change in energy of the heat reservoir after the system of particles
changes is:

∆EHR = −∆Eparticles (7)

= −[(n1 − 1)E1 + (n2 + 1)E2 − (n1E1 + n2E2)] (8)

= E1 − E2 (9)

So, the change in entropy of the heat reservoir is:

∆SHR =
E1 − E2

T
(10)

(c) Derive Boltzmann relation from (a) and (b)
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Because the whole system is isolated, the entropy of the whole system does
not change:

0 = ∆SHR +∆Sparticles (11)

Equating the two changes in entropy yields:

∆Sparticles = −∆SHR (12)

kB ln
n1

n2 + 1
=

E2 − E1

T
(13)

Using the hint, n2 + 1 ≈ n2 and solving for n2/n1:

n1

n2

=
e−E1/kBT

e−E2/kBT
(14)

6



(ST3) A system of N identical spin-half particles have magnetic dipole mo-
ment and can therefore exist in states with dipole moment +m0 and −m0. In
a magnetic field H these states have energy −m0H and +m0H respectively.
These are the only two energy states of a given particle.

(a) Write down the partition function for this system.

(b) Use the partition function from (a) to find an expression for the energy
of the system.

(c) The N particles are distributed uniformly through a volume V . Use the
probability of each magnetic moment to find the magnetization M —
the average magnetic moment per unit volume.

(d) Using the results of (c) show that for sufficiently small magnetic field
strength H, the magnetization is proportional to field strength

M ≃ χm H , (15)

where the magnetic susceptibility χm depends on temperature.

Solution:

(a) The partition function is simply

Z =
[
eβm0H + e−βm0H

]
= 2 cosh(βm0H) , (1)

where β = 1/kBT .

(b) The system’s energy is found by differentiating the natural log of the
partition function

U = −N
∂ lnZ

∂β
= −Nm0H tanh((m0H/kBT )) . (2)

Note that as T → 0 tanh → 1 since it’s argument diverges. This leads to
U = −Nm0H since every particle is in its lowest-energy state, Conversely,
as T → ∞, tanh → 0 since its argument vanishes. This leads to U → 0.

(c) The probability of the particle have magnetic moment ±m0 is

p± =
e±m0H/kBT

em0H/kBT + e−m0H/kBT
. (3)
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The average magnetic moment of a given particle is therefore

⟨m⟩ = m0p+ −m0p− = m0 tanh

(
m0H

kBT

)
. (4)

The average moment per volume is therefore

M =
N

V
⟨m⟩ =

m0N

V
tanh

(
m0H

kBT

)
. (5)

(d) Expanding eq. (5) for small H gives

M ≃ m0N

V

(
m0H

kBT

)
=

m2
0N

kBV T
H (6)

from which we readily extract the magnetic susceptibility

χm =
m2

0N

kBV T
. (7)
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