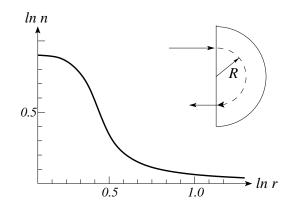
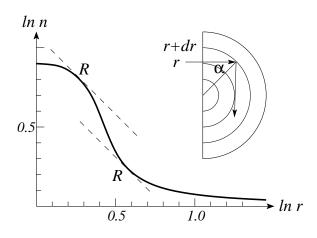
Monochromatic light is incident on the flat part of a semi-cylinder made of concentric rings with different refraction coefficients. The dependence of the refraction coefficient on radius is shown on $\ln n - \ln r$ plot.

Find the radii where a narrow beam of light can propagate along exact semicircle and exit in the opposite direction of where it came from.



Circular optical channel



One can use Fermat's principle and minimize the time it takes light to go in a circle, $r(\phi) = R = const$

$$t = \int_0^{\pi} d\phi \frac{n(r(\phi))\sqrt{r'(\phi)^2 + r(\phi)^2}}{c} ,$$

or one can imagine an onion with different layers having different refraction coefficients. The light entering at radius r should undergo total internal reflection from the next layer at r + dr:

$$\sin \alpha = \frac{r}{r+dr} = \frac{n(r+dr)}{n(r)}$$

and to first order in dr we have,

$$1 - \frac{dr}{r} = 1 + \frac{n'(r)dr}{n(r)}$$

Since dr is arbitrary we have equation for semi-circular optical guides

$$\frac{1}{r} + \frac{1}{n(r)} \frac{dn(r)}{dr} \Big|_{R} = 0 \qquad \Rightarrow \qquad \frac{r}{n(r)} \frac{dn(r)}{dr} = \left| \frac{d\ln n(r)}{d\ln r} \right|_{R} = -1$$

i.e. the radii where light can propagate in a semi-circle correspond to points on the $\ln n - \ln r$ curve with slope -1. There are two such radii, found from the plot graphically, $\ln R_1 \approx 0.3$ and, $\ln R_2 \approx 0.6$.