
Spaghetti dinner

A bowl contains N spaghetti noodles. You reach into the bowl and grab two free ends at random and attach them. You do this N times until there are no free ends left. On average, how many loops are formed by this process?

Answer of problem Spaghetti dinner

Every time you connect two end you have one less noodle strand: you either made a loop or created a longer noodle.

On the first try you have N noodles and 2N ends. You pick an end and the probability that you pick up the other end of the same noodle and make a loop is 1 in 2N - 1.

On the next try you have N - 1 noodles and 2N - 2 ends. Probability that you get a loop this time is 1/(2N - 3). And so on, so the average number of noodle loops is

$$N_{loops} = \frac{1}{2N-1} + \frac{1}{2N-3} + \dots + \frac{1}{3} + 1$$

For large number of noodles we can use approximation $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{N} = \ln N + \gamma$, with $\gamma \approx 0.5772$ being the Euler's constant.

$$N_{loops} = \sum_{n=1}^{2N} \frac{1}{n} - \frac{1}{2} \sum_{n=1}^{2N} \frac{1}{n} \approx \ln 2N + \gamma - \frac{1}{2} (\ln N + \gamma) = \frac{1}{2} \ln(4Ne^{\gamma})$$

Bon appetit!