

Thin-walled uniform conducting sphere (radius R) is attached to a current source I_0 by thin wires, at points A and B, as shown. In what direction charges move at point C ($OC \perp$ $OA, OC \perp OB$)? Make two marks near point C, separated by distance R/1000, such that line connecting them is perpendicular to the motion of the charges at C. What fraction of the total current flows between the marks?

Consider a symmetrized problem, as shown in the figure. At point C the current will be twice that of the original configuration.

Now the pair of wires B' - B create horizontal current at point C, and the pair A - A' - vertical. The resulting direction will be downward at 45°.

The density of the B'B horizontal current at the equator is $j_0 = I_0/2\pi R$, and similarly for the vertical AA' pair. The result for the AB pair of wires will be $j = \sqrt{2}j_0/2 = j_0/\sqrt{2}$ and the fraction of the current that flows between two marks is

I =	R	I_0	_	I_0
	1000	$2\pi R\sqrt{2}$	_	$\overline{2000\pi\sqrt{2}}$