
Condensed Matter - HW 12 :: Ginzburg-Landau theory

PHSX 545

Problem 1 Superconductor in magnetic field

Starting from the Ginzburg-Landau functional
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(a) Find the condensation energy ∆F (T ) of uniform state in zero field, and determine the thermodynamic critical
field defined by ∆F (T ) = −V H2

c /8π.
(b) Define the coherence length ξ(T ) and penetration length λ(T ), in terms of parameters K, a, β and fundamental

constants.
(c) Derive the linearized equation for ψ in magnetic field, and determine Hc2(T ) by solving the eigenvalue problem,

i.e. find maximum field where first non-zero solution for ψ is possible. (Take vector potential in the form A = (0, Hx, 0)
and recall solution of Schrödinger equation in uniform magnetic field.)

(d) From the above determine the critical value of parameter κ = λ/ξ when Hc2(T ) exceeds Hc(T ).

Problem 2 Oh magnet

For a ferromagnet with cubic symmetry one can write GL theory with magnetization vector M = (Mx,My,Mz)
treated as multi-component order parameter:
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In this functional terms up to fourth power in M, consistent with the cubic symmetry, are kept. Take coefficients
a, b, β > 0 and T ∗ < Tc. This functional supports two solutions, one with M ∝< 1, 0, 0 > (magnetization along one
of the main cubic axes), and another with M ∝< 1, 1, 1 > (magnetization along cube’s diagonal).

Determine the magnetization direction below Tc and below T ∗. Find the jump in specific heat at Tc (second order
transition) and jump in entropy and latent heat at T ∗ (first order transition).
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Answer of exercise 1

(a) For the uniform state without field the free energy functional is

F [ψ] = V

{
a(T − Tc)|ψ|2 +

β

2
|ψ|4

}
and its minimization gives
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(b) Minimization of the free energy
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in general case with respect to ψ∗ and A produce two equations:

−K
(
∇− i2e

~c
A

)2

ψ + a(T − Tc)ψ + β|ψ|2ψ = 0 (1)

and

∇×B =
4π

c

[
2eK

~2

(
ψ∗ ~∇

i
ψ − ψ~∇

i
ψ∗
)
− 2K

~2
4e2

c
|ψ2|A

]
(2)

from the first equation we define coherence length, or healing length for ψ:

ξ2 =
K

a(Tc − T )

and from the second equation we have the penetration length of magnetic field into superconductor:

1
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=
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(c) The linearized equation for the order parameter is

−
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)2

ψ +
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K
ψ = 0

which we can write as an eigenvalue problem. With the gauge A = (0, Hx, 0) it takes form:

−∇2
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Since there is no explicit y-dependence one can choose wave function in the form

ψ(x, y) =
∑
ky

eikyyfky
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This is equation of a harmonic oscillator shifted by x0. The eigenvalues for “energy” a(Tc−T )/K are independent of
ky and given by (integer n = 0, 1, 2 . . . ):
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K
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We are interested in the highest critical field (n = 0)

Hc2(T ) =
~c

2eK
a(Tc − T )

(d) The ratio of penetration and coherence lengths in a uniform superconductor with |ψ|2 = a(Tc − T )/β is
temperature independent:

κ2 =
λ2

ξ2
=

~2c2β
32πK2e2

The Hc2 field exceeds thermodynamic critical field when
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β
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Answer of exercise 2

For two different magnetization directions one can write the GL functional as two functionals that depend on the
magnitude M only. Minimize each with respect to M and find the energy of each configuration. The lowest energy
determines the direction of magnetization in the ordered phase.

For < 1, 0, 0 > phase we write

M = M(1, 0, 0) F100[M ] = a(T − Tc)M2 +
1

2
β1M

4 +
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2
b(T − T ∗)M4

For < 1, 1, 1 > phase:
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√
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For convenience we denote β2 = b(T − T ∗) - an interaction coefficient that is positive above T ∗, and negative below
it.

Minimization gives:

(1, 0, 0) : M2 =
a(Tc − T )

β1 + β2
F100(T ) = −a
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and
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From this we conclude that if

β2 > 0 (T ∗ < T < Tc) ⇒ F111(T ) < F100(T )

and if

β2 < 0 (T < T ∗) ⇒ F100(T ) < F111(T )

This means that at Tc ordered state appears with magnetization along the cube’s diagonal. At T ∗ an orientational
transition occurs, and magnetization rotates to point along cube’s side.

At second order transition Tc specific heat experiences jump.
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At the orientation transition T ∗ the entropy experiences jump:

∆S(T ∗) = S
∣∣∣T∗−

T∗+
= − ∂

∂T
(F100(T )− F111(T ))

Since at T ∗ the difference between two free energies is coming from the denominator we differentiate denominator
only:

∆S = −a
2(Tc − T ∗)2

2β2
1
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3
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To go into the lower temperature phase from above we must reduce the entropy content, and remove some heat from
the system L = T ∗|∆S| - latent heat.


