Condensed Matter - HW 10 :: Superfluid

PHSX 545

Problem 1

Using the phonon-roton model of ⁴He spectrum, find the quasiparticle entropy, heat capacity and density of the normal component at low temperature.

Problem 2

(a) Find the energy E and the angular momentum L carried by a single vortex placed along the rotation axis of a long cylinder of radius R. Take the superfluid wave function in the form $\psi(r, \phi) = \sqrt{n}e^{in\phi} \theta(r - r_c)$ with the uniform superfluid density ρ_s $(n = 0, 1, 2, ..., and \theta(x)$ is the step-function). From this deduce the critical angular frequency ω_c for nucleation of a single vortex (when $E_{rot} = E - L\omega$ becomes negative).

(b) A neutron star of radius R = 10km rotates with frequency $\Omega/2\pi = 1$ Hz. Find the area density n_v of vortices in neutron superfluid, assuming the rotational motion of the star is due to vortices, their density is uniform, and the single-quantized vortices are along the rotation axis. Hint: calculate the circulation along a circle of radius r inside the star.