Condensed Matter - HW 9 :: BEC & quasiparticles

PHSX 545

Problem 1

Show that there is no BEC in two-dimensional ideal gas.

Problem 2

Consider an excited configuration of weakly interacting Bose gas at zero T, where two *quasiparticles* are present in a state with momentum $\mathbf{p} \neq 0$. Write down the quasiparticle wave function in Fock space, determine the occupation numbers of *particles*, and the number of particles in the condensate, compared to the ground state. Find the particle current carried by this state.

Hint: the single particle current operator at location \mathbf{r} is

$$\mathbf{j}(\mathbf{r}) = \frac{1}{2m} \sum_{i} \left[\mathbf{p}_{i} \delta(\mathbf{r} - \mathbf{x}_{i}) + \delta(\mathbf{r} - \mathbf{x}_{i}) \mathbf{p}_{i} \right] ,$$

where summation is over all particles, i, \mathbf{x}_i is particle i's position, and its momentum operator $\mathbf{p}_i = \frac{\hbar}{i} \frac{\partial}{\partial \mathbf{x}_i}$. In terms of field creation and annihilation operators the current is

$$\mathbf{j}(\mathbf{r}) = \frac{1}{2m} \int d\mathbf{x} \hat{\Psi}^{\dagger}(\mathbf{x}) \left[\frac{\hbar}{i} \frac{\partial}{\partial \mathbf{x}} \delta(\mathbf{r} - \mathbf{x}) + \delta(\mathbf{r} - \mathbf{x}) \frac{\hbar}{i} \frac{\partial}{\partial \mathbf{x}} \right] \hat{\Psi}(\mathbf{x}) ;$$

confirm that it coinsides in the form with the usual particle current of the Schrödinger equation, and write it in terms of particle operators $\hat{a}_{\mathbf{p}}, \hat{a}_{\mathbf{p}}^{\dagger}$ in plane wave basis.

Problem 3

Consider a sudden change of the scattering length in Bose gas from f_0 to F_0 . Both interactions are small. Within Bogoliubov theory, describe dynamics of the system.