
Condensed Matter - HW 9 :: BEC & quasiparticles

PHSX 545

Problem 1

Show that there is no BEC in two-dimensional ideal gas.

Problem 2

Consider an excited configuaration of weakly interacting Bose gas at zero T , where two quasiparticles are present in
a state with momentum p 6= 0. Write down the quasiparticle wave function in Fock space, determine the occupation
numbers of particles, and the number of particles in the condensate, compared to the ground state. Find the particle
current carried by this state.

Hint: the particle current operator at location r is

j(r) =
1

2m

∑
i

[piδ(r− xi) + δ(r− xi)pi] ,

where summation is over all particles, i, xi is particle i’s position, and its momentum operator pi =
~
i

∂

∂xi
. In terms

of field creation and annihilation operators the current density is

j(r) =
1

2m

∫
dxΨ̂†(x)

[
~
i

∂

∂x
δ(r− x) + δ(r− x)

~
i

∂

∂x

]
Ψ̂(x) ;

confirm that it coinsides in the form with the usual particle current of the Schrödinger equation, and write it in terms
of particle operators âp, â

†
p in plane wave basis.

Problem 3

Consider a sudden change of the scattering length in Bose gas from f0 to F0. Both interactions are small. Within
Bogoliubov theory, describe dynamics of the system.
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Answer of exercise 1

From the normalization condition

n = gs

∫
d2p

h2
np = gs

∫
d2p

h2
1

eβ(εp−µ) − 1

the critical temperature is reached when chemical potential vanishes µ = 0

n = gs
2π

h2

∫ ∞
0

pdp
1

ep2/2mTc − 1
= gs

2π

h2

∫ ∞
0

d(p2/2)
1

ep2/2mTc − 1
= gs

2πmTc
h2

∫ ∞
0

dx
1

ex − 1

The critical temperature from this is

Tc =
nh2

2πmgs

[∫ ∞
0

dx

ex − 1

]−1
= 0

since the integral is ln-divergent in the x = 0 limit.
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Answer of exercise 2

The configuration with 2 quasiparticles in state p can be obtained from the ground state (defined as configuration
without excitations) by acting with creation operators on the ground state:

b̂k|GS 〉 = 0 ⇒ | 2p 〉 =
1√
2
b̂†2p |GS 〉 ⇒ b̂†pb̂p | 2p 〉 = 2 | 2p 〉 b̂†kb̂k

∣∣∣
k6=p
| 2p 〉 = 0

where quasipaticle operators are related to the particle operators through Bogoliubov transformation (from lecture
notes)

âk = ukb̂k + vkb̂
†
−k with u2k =

1

2

(
ε0k + g

εk
+ 1

)
v2k =

1

2

(
ε0k + g

εk
− 1

)
=

m2u2

2εk[ε0k + g + εk]

ε0p =
p2

2m
εp =

√
u2p2 +

p4

4m2
u2 =

g

m
≡ 4πf0

m2

N

V

To calculate the number of original particles in plane wave states, we need the operator for number of particles
expressed in terms of quasiparticle operators,

â†kâk = u2k b̂
†
kb̂k + ukvk b̂−kb̂k + ukvk b̂

†
kb̂
†
−k + v2k b̂

†
−kb̂−k + v2k ,

becuase we know from the first line how the quasiparticle operators act on the quasiparticle states. We have three
different possibilities (I leave only terms in â†â expansion that do not produce zero):

Nk6=p,−p = 〈 2p |â†kâk| 2p 〉 = 〈 2p |v2k| 2p 〉 = v2k

Np = 〈 2p |â†pâp| 2p 〉 = 〈 2p |u2p b̂†pb̂p + v2p| 2p 〉 = 2u2p + v2p

N−p = 〈 2p |â†−pâ−p| 2p 〉 = 〈 2p |v2p b̂†pb̂p + v2−p| 2p 〉 = 2v2p + v2−p

The total number of particles in excited states with non-zero momentum is

Nex =
∑
k

Nk =
∑
k

v2k + 2(u2p + v2p)

- the first term is the number of k 6= 0 particles in the ground state. The number of particles in the condensate is

N0 = N −Nex = N − V
∫

d3k

(2π)3
v2k − 2

ε0p + g

εp

The last term can be written as

2
ε0p + g

εp
= 2

p2 + 2m2u2√
p4 + 4m2u2p2

- can be much greater than 2 for small momenta!

This is the reduction of condensate on top of what was depleted in the ground state, the middle term. This original
depletion we calculate as

Nex,0 = V

∫
d3k

(2π)3
v2k =

V

2

∫
d3k

(2π)3

(
ε0k + g

εk
− 1

)
=

V

4π2

∫ ∞
0

k2dk

(
k2 + 2m2u2

k
√
k2 + 4m2u2

− 1

)
We can rewrite the fraction in a more convenient way to get rid of k2 in numerator:

Nex,0 =
V

4π2

∫ ∞
0

kdk

(√
k2 + 4m2u2 − 2m2u2√

k2 + 4m2u2
− k
)

=
V

4π2

[
1

3
(k2 + 4m2u2)3/2 − 2m2u2

√
k2 + 4m2u2 − 1

3
k3
]∞
0
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=
V

4π2

1

3

[
(k2 − 2m2u2)

√
k2 + 4m2u2 − k3

]∞
0

Expanding in (1/k) in the upper limit we get k3(1 + 0/k2 +O(1/k4))− k3 → 0 and the lower limit value gives us final
answer for ground state condensate depletion:

Nex,0 =
V

4π2

1

3
4m3u3 = N

8

3

√
nf30
π

The particle current density operator in second-quantized form is (doing integration by parts once in the first term):

j(r) =
1

2m

∫
dxΨ̂†(x)

[
~
i

∂

∂x
δ(r− x) + δ(r− x)

~
i

∂

∂x

]
Ψ̂(x) =

1

2m

∫
dxδ(r−x)

[
−~
i

∂Ψ̂†(x)

∂x
Ψ̂(x) + Ψ̂†(x)

~
i

∂Ψ̂(x)

∂x

]

=
~

2mi

[
Ψ̂†(r)

∂Ψ̂(r)

∂r
− ∂Ψ̂†(r)

∂r
Ψ̂(r)

]

Plugging in the field operator

Ψ̂(r) =
1√
V

∑
k

âke
ikr

gives the current in terms of particle operators

j(r) =
1

2mV

∑
k1,k2

(k1 + k2)â†k1
âk2

e−i(k1−k2)r

In the state | 2p 〉 this current can be evaluated as

〈 2p |j(r)| 2p 〉 =
1

2mV

∑
k1,k2

(k1 + k2)〈 2p |â†k1
âk2
| 2p 〉 e−i(k1−k2)r

where again we are going to use particle-quasiparticle Bogoliubov connection:

=
1

2mV

∑
k1,k2

(k1 + k2)〈 2p |uk1
uk2

b̂†k1
b̂k2

+ vk1
uk2

b̂−k1
b̂k2

+ uk1
vk2

b̂†k1
b̂†−k2

+ vk1
vk2

b̂−k1
b̂†−k2
| 2p 〉 e−i(k1−k2)r

The two off-diagonal terms including either two creation or two annihilation operators produce zero. In the last
term we use commutation relation to split off the ground state current, that is zero as well after momentum angle
integration.

=
1

V

∑
k1,k2

k1 + k2

2m
〈 2p |uk1uk2 b̂

†
k1
b̂k2 + vk1vk2 b̂

†
−k2

b̂−k1 + vk1vk2 δk2k1︸ ︷︷ ︸
zero after k-angle integral

| 2p 〉 e−i(k1−k2)r

The remaining matrix terms produce non-zero when k1 = k2 = p or k1 = k2 = −p with the result

〈 2p |j(r)| 2p 〉 =
1

2mV

[
(p + p)u2p 2 + (−p− p)v2−p2

]
=

1

V

p

m

[
2u2p − 2v2p

]
=

1

V

2p

m

- a natural result, since the total mass current is momenum current divided by the particle mass, and the two
quasiparticles in momentum state p carry total momentum 2p. 1/V is for the density of the current.
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Answer of exercise 3

Now, this is a diffcult problem...
Conceptually, this is a problem from perturbation theory where the interaction potential changes fast and we need

to figure out what are the transition probabilities to different states. Given the state of the system |ψi 〉 before the
f0 → F0 switch, we can expand it into the basis states of the new Hamiltonian |n, F0 〉 to find probability amplitudes
of transition into new states:

wni = |〈n, F0 |ψi, f0 〉|2 .

One can approach this from the second-quantized form in a following manner: the original Hamiltonian is diago-
nalized to get effective new Hamiltonian:

h = e0(f0) +
∑
p

εp(f0)b̂†pb̂p e0(f0) - corresponds to | gs, f0 〉

b̂p = upâp − vpâ†−p

with ground state energy and excitation energies εp(f0) are functions of the interaction parameter f0. The quasiparticle
creation/annihilation operators also depend on the scattering length through coefficients up, vp(f0). Assuming we

can find the ground state wavefunction in terms of â†k operators (coherent state), we can define a given state with

any number of excitations, staring with one, | i 〉 = b̂†k| gs, f0 〉, and so on.
After the interaction switch we do the same with the new scattering length, to arrive to new effective Hamiltonian

with new ground state and excitation energies, and new coefficients for Bogoliubov operators:

H = E0(F0) +
∑
p

Ep(F0)B̂†pB̂p E0(F0) - corresponds to |GS,F0 〉

B̂p = Upâp − Vpâ†−p

Again, having determined the new ground state |GS,F0 〉 in terms of original â-operators, we can form a basis of

excited states | f 〉 = B̂†k|GS,F0 〉 - starting with one excitation, for example.
Since we now have the states of the original Hamiltonian, and the states of the final Hamiltonian, and we have all

the operators connected to â-operators, we can find all the transition amplitudes

wfi = |〈 f | i 〉|2 .

The above is a very convoluted way to do this problem. A more natural way is to work with Heisenberg equation
for field operators / wave functions:

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂(r, t), Ĥ] =

(
− ~2

2m
∇2 − µ− Vext(r)

)
Ψ̂(r, t) +

4π~2f0(t)

m
Ψ̂†(r, t)Ψ̂(r, t) Ψ̂(r, t)

where the first term includes kinetic energy and external potential, and the second term is due to two-body particle
particle interactions, where we made an assumption of short-range potential U that depends on time through the
scattering s-wave amplitude f0(t). This equation is known as Gross-Pitaevskii equation.

The Bogoliubov approximation consists of writing the field operator as a sum of the condensate wave function and
a small excitation part:

Ψ̂(r, t) = Φ̂0(r, t) + ψ̂(r, t) ,

and then using it in Gross-Pitaevskii equation to derive the condensate equation for almosts classical part Φ0(r, t),

and the linearized equation for ψ̂(r, t), that uses Φ0(r, t) as an input. The time-varying interaction part naturally
appears in both, and one can solve the equation for Φ0(r, t) first with rapidly changing f0(t), and use it to solve for

time evolution of quasiparticles too, ψ̂(r, t).
Some simplification is that the problem asks for a uniform state evolution, with no external fields. Chemical

potential is µ = nU(f0) = nU0. Here is the equations:
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i~
∂

∂t
Φ0(t) = −nU0 + U(t)|Φ0(t)|2Φ0(t) , U(t) = U0 + δU(t) ,

i~
∂

∂t
ψ̂(t) = −nU0ψ̂(t) + U(t)[2|Φ0(t)|2ψ̂(t) + Φ0(t)2ψ̂†(t)]

See Phys. Rev. A, 66, 033605 (2002).


