
Condensed Matter - HW 8 :: Dielectric function.

PHSX 545

Problem 1

Collaborative effort: form a team that includes ‘theorist’ and ‘experimentalist’ (several people on
the team is OK):

Tasks:

Theory: Find the imaginary part of dielectirc function ε′′(q, ω) in RPA for classical electron gas obeying Maxwell-
Boltzmann statistics.

Experiment: provided formula from theory, create a 3D (or better, 2D color plot) of ωε′′ and −χ′′ in q, ω-plane and
interpret them. Choose convenient dimensionless units in terms of temperature.

Problem 2

Calculate ε(q, ω) in RPA for the two-dimensional electron gas at zero temperature. Show that susceptibility can
be given by analytic expression (hint: treat the two Dirac-Fermi distributions in χ0 separately). Find the explicit
expression for two non-vanishing terms of the plasmon dispersion ω(q) in the long wavelength limit.

(You may again form theory and experiment collaboration: the experimental people can plot the imaginary part
of the susceptibility to determine where the plasmon mode is damped, and also graphically find the exact plasmon
dispersion.)
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Answer of exercise 1

The dielectric function in RPA approximation is

ε(q, ω) = 1− 4πe2

q2
χ0(q, ω) χ0(q, ω) =

∑
p

np+q − np
εp+q − εp − ~ω − i0+

For this problem we will use Maxwell-Boltzmann distribution with chemical potential fixed by particle density

np = e−β(εp−µ) n0 =
∑
p

np = eβµ
∫

d3p

(h)3
e−(p

2/2mT ) = eβµ
(

2πmT

h2

)3/2

The imaginary part of the dielectric function is

ε′′(q, ω) = −4πe2

q2
χ′′0(q, ω) = −4πe2

q2
π
∑
p

(np+q − np)δ(εp+q − εp − ~ω)

The delta-function relates the energies of particle and hole excitations involved in the process of interacting with
external field, and also gives constraints on the possible momenta p. Since the system is isotropic we can choose q to
be the z-axis direction, and one can write

ε′′(q, ω) = −4πe2

q2
π

∑
px,py, pz

[n(εp + ~ω)− n(εp)] δ

(
pz~q
m

+
~2q2

2m
− ~ω

)

=
4πe2

q2
π
(
1− e−β~ω

)
eβµ

∫
dpxdpydpz

(h)3
e−(p

2/2mT ) δ

(
pz~q
m

+
~2q2

2m
− ~ω

)
Do the x, y Gaussian integrals, and eliminate chemical potential,

ε′′(q, ω) =
4π2e2

q2
(
1− e−β~ω

)
n0

∫
dpz√
2πmT

e−(p
2
z/2mT ) δ

(
pz~q
m

+
~2q2

2m
− ~ω

)

=
4π2e2

q2
(
1− e−β~ω

)
n0

m

~q
√

2πmT
e−(p

2
z/2mT )

∣∣∣
pz=(m/~q)(~ω− ~2q2

2m )

=
4π2e2mn0

~
√

2πmT q3

(
1− e−β~ω

)
exp

(
− m

2(~q)2T

[
~ω − ~2q2

2m

]2)
Introduce dimensionless variables

y =
~ω
T

x =
~q√
2mT

and write the imaginary part of dielectric function as

ωε′′(q, ω) =
π3/2n0~

2mT

y

x3
(
1− e−y

)
exp

(
− (y − x2)2

4x2

)
Function ωε′′ determines the rate of energy absorption by the
medium in unit volume. The plot of this function is shown on
the right. It indicates that the max absorption of EM waves will
be just above ~ω = ~2q2/2m white line.

The better view is maybe from the second plot, that depicts
−ωχ′′(q, ω). This eliminates the extra 1/q2 factor in front and
clearly shows the quadratic dispersion.



3

Answer of exercise 2

The dielectric function in RPA approximation is

ε(q, ω) = 1− 4πe2

q2
χ0(q, ω)

k

q/2−q/2

and the susceptibility in 2D case is

χ0(q, ω) =

∫
d2p

h2
np+q/2 − np−q/2

εp+q/2 − εp−q/2 − ~ω − i0+

The density of states in 2D gas is energy indepen-
dent, and it is related to the particle density via:

Nf =
2πm

h2
n0 =

πp2f
h2

= Nfεf

We split the integral in two, and integrate in polar
coordinates centered at the origins of two Dirac-Fermi
circles:

χ0(q, ω) =

∫
d2p

h2

[
np+q/2

εp+q/2 − εp−q/2 − ~ω
−

np−q/2

εp+q/2 − εp−q/2 − ~ω

]

=

∫
d2p

h2

[
np

εp − εp−q − ~ω
− np
εp+q − εp − ~ω

]
=

2π

h2

pf∫
0

pdp

2π∫
0

dφ

2π

[
1

pq/m− (~ω + q2/2m)
− 1

pq/m− (~ω − q2/2m)

]

and we remember that ω has small positive imaginary part.

χ0(q, ω) = Nf

pf∫
0

pdp
1

pq

2π∫
0

dφ

2π

[
1

cosφ−m(~ω + q2/2m)/pq
− 1

cosφ−m(~ω − q2/2m)/pq

]

We take the angle integral first with standard sub z = eiφ:

2π∫
0

dφ

2π

1

cosφ− a
=

2

2πi

∮
|z|=1

dz

z2 − 2az + 1
=

2

2πi

∮
|z|=1

dz

(z − a)2 + 1− a2
=

2

zin − zout

where the zin/out are poles inside/outside the circle |z| = 1.

For |Re(a)| > 1 the poles are zin = sgn(a)(|a| −
√
a2 − 1), zout = sgn(a)(|a|+

√
a2 − 1);

For |Re(a)| < 1 we need to use the small positive imaginary part of a to determine which of the poles z± =

a±i
√

1− a2 is inside the unit circle. Taking a = a+iε and expanding in ε we have |z±|2 = |a+iε±i
√

1− a2 − i2aε|2 ≈
|a+ iε± i(

√
1− a2 − iaε/

√
1− a2)|2 = |a± aε/

√
1− a2 + iε± i

√
1− a2|2 = a2(1± ε/

√
1− a2)2 + (

√
1− a2 ± ε)2 =

a2 ± 2a2ε/
√

1− a2 + (1 − a2) ± 2ε
√

1− a2 = 1 ± 2ε/
√

1− a2 So we have for Re(a2) < 1: zin = a − i
√

1− a2 and

zout = a+ i
√

1− a2. Combining all together we can write the two cases in a unified way:

2π∫
0

dφ

2π

1

cosφ− a
=


− sgn(a)√

a2 − 1
, if |Re(a)| > 1

− 1

i
√

1− a2
, if |Re(a)| < 1

 =
i√

1− a2
= − sgn(a)√

a2 − 1
,

assuming the square root’s branch-cut is along the negative real value of the argument.
For the susceptibility we get

χ0(q, ω) =
Nf
q

pf∫
0

pdp

[
sgn(~ω − q2/2m)√

(m~ω/q − q/2)2 − p2
− sgn(~ω + q2/2m)√

(m~ω/q + q/2)2 − p2

]
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χ0(q, ω) = −Nf
q

[
sgn(~ω − q2/2m)

√
(m~ω/q − q/2)2 − p2 − sgn(~ω + q2/2m)

√
(m~ω/q + q/2)2 − p2

] ∣∣∣pf
0

χ0(q, ω) =
Nf
q

[
sgn(~ω + q2/2m)

√
(m~ω/q + q/2)2 − p2f − sgn(~ω − q2/2m)

√
(m~ω/q − q/2)2 − p2f − q

]
(1)

This is the exact general expression for susceptibility. The imaginary part −χ′′ gives the region (q, ω) of damped
plasma oscillations. (Note 2 below).

In the long wavelength limit we expand in powers of q, foreseeing that the frequency is high:

√
(m~ω/q + q/2)2 − p2f−

√
(m~ω/q − q/2)2 − p2f =

m~ω
q

√(
1 +

q2

2m~ω

)2

−
q2v2f
(~ω)2

−m~ω
q

√(
1− q2

2m~ω

)2

−
q2v2f
(~ω)2

≈ m~ω
q

q2

m~ω

[
1 +

1

2

(vfq
~ω

)2
+

3

8

(vfq
~ω

)4]
= q

[
1 +

1

2

(vfq
~ω

)2
+

3

8

(vfq
~ω

)4]
and the plasmon dispersion is given by:

1− 4πe2

q2
χ0(q, ω) = 0 ⇒ 1− 4πe2

q2
Nf

[
1

2

(vfq
~ω

)2
+

3

8

(vfq
~ω

)4]
= 0

and finally

1− 4πe2n0
mω2

[
1 +

3

4

(vfq
ω

)2]
= 0 ⇒ ω2(q) = ω2

p

[
1 +

3

4

v2fq
2

ω2
p

]
ω2
p =

4πe2n0
m

Note 1: We could have obtained this by doing q-expansion from the beginning:

χ0(q, ω) =

∫
d2p

h2
np+q/2 − np−q/2

εp+q/2 − εp−q/2 − ~ω − i0+
=

∫
d2p

h2

(
∂np
∂εp

)
vq

vq− ~ω
=
Nf
~ω

2π∫
0

dφ

2π
(vfq)

[
1− vfq

~ω

]−1

=
Nf
~ω

2π∫
0

dφ

2π

[
(vfq)2

~ω
+

(vfq)4

(~ω)3

]
=

Nf
(~ω)2

q2v2f

[
1

2
+

3

8

(vfq)
2

(~ω)2

]

- same limiting expression for susceptibility as before.
Note 2: The region of damping is given by the non-vanishing imaginary part of the susceptibility Eq.(1) which we

write in this form now:

χ0(q, ω) =
Nf
q

[
i
√
p2f − (m~ω/q + q/2)2 − i

√
p2f − (m~ω/q − q/2)2 − q

]
.

The damped region is found when the imaginary part of the susceptibility is negative. Since the second square root
in this expression is always greater than the first one in the first quadrant of the (q, ω)-plane, the second square root
determines the damping region:

p2f > (m~ω/q − q/2)2 ⇒ −vfq < ~ω − q2

2m
< vfq ⇒ −vfq +

q2

2m
< ~ω < vfq +

q2

2m

which is the particle-hole continuum that we have also seen in 3D case.


