
Condensed Matter - HW 7 :: Charged Fermi Liquid

PHSX 545

Problem 1 Yukawa potential

Find the spatial dependence of Yukawa potential Φ(r) in 3D. In Fourier space it is given by (k0 is a fixed wavenum-
ber):

Φ(k) =
4πQ

k2 + k20

Find the differential equation that Φ(r) satisfy. (Recall the Coulomb law and its Fourier representation.)

Problem 2 Hartree-Fock

The Coulomb interactions in a conductive material have three components, electron-electron, electron-ion, ion-ion,
that can be written in terms of field operators for electrons Ψ̂ and ions Φ̂:

V̂ = V̂ee + V̂ei + V̂ii

V̂ee =
1

2

∫

dr

∫

dr′Ψ̂†(r)Ψ̂†(r′)
e2

|r− r′|
Ψ̂(r′)Ψ̂(r)

V̂ii =
1

2

∫

dr

∫

dr′Φ̂†(r)Φ̂†(r′)
Z2e2

|r− r′|
Φ̂(r′)Φ̂(r)

V̂ei =

∫

dr

∫

dr′Ψ̂†(r)Φ̂†(r′)
−Ze2

|r− r′|
Φ̂(r′)Ψ̂(r)

In evaluating the contribution of Coulomb interaction to the total energy one sometimes uses the Hartree-Fock
approximation.
(a) The Hartree term consists of evaluating the ensemble average 〈V̂〉 by pairing up creation-annihilation operators

with the same arguments:

〈Ψ̂†(r)Ψ̂(r)〉 = ne(r) - number density of electrons at point r

〈Φ̂†(r)Φ̂(r)〉 = ni(r) - number density of ions at point r

so that the electron-electron interaction term, for example, becomes

V H
ee =

1

2

∫

dr

∫

dr′〈Ψ̂†(r)Ψ̂(r)〉
e2

|r− r′|
〈Ψ̂†(r′)Ψ̂(r′)〉 =

1

2

∫

dr

∫

dr′ ne(r)
e2

|r− r′|
ne(r

′)

Using local (i.e. at each point r) charge neutrality, show that the total Hartree term is zero in homogeneous gas:
V H
ee + V H

ei + V H
ii = 0.

(b) The Fock term, also called the exchange term, is obtained by pairing up the creation and annihilation operators
at different locations (as a result there is a minus sign from the single exchange of fermionic operators):

V F
ee = −

1

2

∫

dr

∫

dr′〈Ψ̂†(r)Ψ̂(r′)〉
e2

|r− r′|
〈Ψ̂†(r′)Ψ̂(r)〉 = −

1

2

∑

k,q

nk

4πe2

q2
nk+q ,

where we went to momentum space using decomposition into plane wave basis, and introduced Fermi-Dirac distribution

〈â†kâp〉 = δkpnk. Calculate the electron self-energy in ideal gas with the unscreened interaction at T = 0,

Σ(k) = −
∑

q

4πe2

q2
nk+q , that effectively ‘renormalizes’ quasiparticle energy ξ(k) → ξ′(k) = ξ(k) + Σ(k)

in the mean-field approximation, and show that it leads to unphysical infinite velocity vg = ∂kξ
′(k) of quasiparticles

at Fermi surface (which means zero effective mass, and zero DoS at Fermi level!).



2

Answer of exercise 1

The Fourier transform into real space is

Φ(r) =

∫

d3k

(2π)3
e−ikr 4πQ

k2 + k20
=

1

(2π)3
2π

+1
∫

−1

d cos θ

∞
∫

0

k2dke−ikr cos θ 4πQ

k2 + k20

Take the angle integral first,

=
1

(2π)2

∞
∫

0

k2dk
eikr − e−ikr

ikr

4πQ

k2 + k20
=

∣

∣

∣
in second exponent do k → −k substitution

∣

∣

∣
=

4πQ

ir(2π)2

∞
∫

−∞

kdk
eikr

k2 + k20

Completing the integration contour in the UHP of comlpex-k, we go around a single pole, k∗ = ik0:

=
4πQ

ir(2π)2
2πi

ik0e
i(ik0)r

2ik0
=

Q

r
e−k0r

To derive the equation satisfied by the Yukawa potential, we apply Laplacian to the integral

∇
2Ψ(r) =

∫

d3k

(2π)3
∇

2
re

−ikr 4πQ

k2 + k20
= −

∫

d3k

(2π)3
e−ikrk2

4πQ

k2 + k20
= −

∫

d3k

(2π)3
e−ikr

(

4πQ− k20
4πQ

k2 + k20

)

add and subtract k20 from k2:

= −

∫

d3k

(2π)3
e−ikr(k2 + k20 − k20)

4πQ

k2 + k20
= −

∫

d3k

(2π)3
e−ikr

(

4πQ− k20
4πQ

k2 + k20

)

The first part of this integral is a delta-function and the second part is the original potential:

∇
2Φ(r) = −4πQδ(r) + k20Φ(r) ⇒ (∇2 − k20)Φ(r) = −4πQδ(r)
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Answer of exercise 2

(a) The total Hartree term is

〈V̂〉Hartree = 〈V̂ee + V̂ei + V̂ii〉
Hartree =

1

2

∫

dr

∫

dr′ ne(r)
e2

|r− r′|
ne(r

′)

+

∫

dr

∫

dr′ ne(r)
−Ze2

|r− r′|
ni(r

′) +
1

2

∫

dr

∫

dr′ ni(r)
Z2e2

|r− r′|
ni(r

′)

After symmetrizing the electron-ion term with respect to r, r′, we can combine the three integrals into one:

〈V̂〉Hartree =
1

2

∫

dr

∫

dr′ [ne(r)− Zni(r)]
e2

|r− r′|
[ne(r

′)− Zni(r
′)] = 0

since for electrically neutral uniform system we have

Ne = ZNi ⇒ ne(r) = Zni(r)

(b) The Fock or exchange self-energy is

Σ(k) = −
∑

q

4πe2

q2
nk+q = −

∑

p

4πe2

|p− k|2
np

At zero energy we sum over p < pf only:

Σ(k) = −

∫

p<pf

d3p

(2π)3
4πe2

p2 + k2 − 2pk cos θ
=

∣

∣

∣
u = cos θ

∣

∣

∣
= −

2e2

2π

+1
∫

−1

du

pf
∫

0

p2dp

p2 + k2 − 2pku

Integrate over u first,

Σ(k) = −
e2

2πk

pf
∫

0

pdp ln
(p+ k)2

(p− k)2

Keeping the square inside the logarythm we cover both k > pf and k < pf cases. Use the integral (theoretically
minded students should take it with pen and paper, first step here is integration by parts)

∫

xdx ln(x+ a)2 =
1

2

∫

ln(x+ a)2 dx2 =
1

2
x2 ln(x+ a)2 −

∫

dx
x2

x+ a

=
1

2
x2 ln(x+ a)2 −

∫

dx
(x+ a)(x− a) + a2

x+ a
=

1

2
(x2 − a2) ln(x+ a)2 −

(

x2

2
− ax

)

The self-energy is

Σ(k) = −
e2

2πk

pf
∫

0

pdp ln
(p+ k)2

(p− k)2
= −

e2

2πk

[

1

2
(p2 − k2) ln

(p+ k)2

(p− k)2
+ 2kp

]

∣

∣

∣

p=pf

p=0
= −

2e2pf
π

F

(

k

pf

)

where we defined function

F (x) =
1

2
+

1− x2

4x
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

This is Lindhard function: a continuous function, including x = 1 point, but the first derivative is divergent at that
point, F ′(x = 1) = −∞. This means that the group velocity of particles vg = ∂k[ξ(k) + Σ(k)] with k = pf is infinite!


