Condensed Matter - HW 7 :: Charged Fermi Liquid

PHSX 545

Problem 1 Yukawa potential

Find the spatial dependence of Yukawa potential ®(r) in 3D. In Fourier space it is given by (ko is a fixed wavenum-
ber):
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Find the differential equation that ®(r) satisfy. (Recall the Coulomb law and its Fourier representation.)

Problem 2 Hartree-Fock

The Coulomb interactions in a conductive material have three components, electron-electron, electron-ion, ion-ion,
that can be written in terms of field operators for electrons ¥ and ions ®:
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In evaluating the contribution of Coulomb interaction to the total energy one sometimes uses the Hartree-Fock
approximation. A

(a) The Hartree term consists of evaluating the ensemble average (V) by pairing up creation-annihilation operators
with the same arguments:

Qanes )\IJ( )) = ne(r) - number density of electrons at point r
(@ (x)d(r)) = ny(r) - number density of ions at point r

so that the electron-electron interaction term, for example, becomes
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Using local (i.e. at each point r) charge neutrality, show that the total Hartree term is zero in homogeneous gas:
Vel + VI + Vil = 0.

(b) The Fock term, also called the exchange term, is obtained by pairing up the creation and annihilation operators
at different locations (as a result there is a minus sign from the single exchange of fermionic operators):
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where we went to momentum space using decomposition into plane wave basis, and introduced Fermi-Dirac distribution
<&1T<dp> = dkpnk. Calculate the electron self-energy in ideal gas with the unscreened interaction at 7" = 0,

4 2
(k) =— Z Z—;nk+q, that effectively ‘renormalizes’ quasiparticle energy £(k) — &' (k) = £(k) + 2(k)
q

in the mean-field approximation, and show that it leads to unphysical infinite velocity vy, = ;&' (k) of quasiparticles
at Fermi surface (which means zero effective mass, and zero DoS at Fermi level!).



Answer of exercise 1

The Fourier transform into real space is
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Take the angle integral first,
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in second exponent do k& — —k substitution ‘ = ﬂ / kdkﬂ
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Completing the integration contour in the UHP of comlpex-k, we go around a single pole, k* = ikq:
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To derive the equation satisfied by the Yukawa potential, we apply Laplacian to the integral
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add and subtract kZ from k?:
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The first part of this integral is a delta-function and the second part is the original potential:

V20(r) = —47Q4(r) + k2®(r) = (V? = k2)®(r) = —47Q0(r)




Answer of exercise 2

(a) The total Hartree term is
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After symmetrizing the electron-ion term with respect to r,r’, we can combine the three integrals into one

yHartree /dr/dr ne(r) — Zn;i(r )]ﬁ[ne(r/) — Zn;(x")] =0
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since for electrically neutral uniform system we have
N, =ZN; = ne(r) = an(r)

(b) The Fock or exchange self-energy is
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At zero energy we sum over p < py only:
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Keeping the square inside the logarythm we cover both k£ > p; and k < p; cases. Use the integral (theoretically

minded students should take it with pen and paper, first step here is integration by parts)
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The self-energy is
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where we defined function
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This is Lindhard function: a continuous function, including x = 1 point, but the first derivative is divergent at that
point, F'(x = 1) = —oo. This means that the group velocity of particles vy = 0;[€(k) + X (k)] with k = py is infinite!



