
Condensed Matter - HW 5 :: Zero Sound Attenuation

PHSX 545

Problem 1

Write the transport equation with collision term in τ approximation:

(ω − qvf )νp̂ − qvf

∫

dΩp̂′

4π
F s(p̂ · p̂′)νp̂′ − qvf U = −

i

τ
[νp̂ − ν0 − ν1P1(q · p̂)]

where we subtracted ℓ = 0 and ℓ = 1 terms in collision integral to satisfy the particle and momentum conservation
laws.

(a) By projecting out different Pℓ(p̂ · q̂) harmonics derive general equation for νℓ amplitudes directly from this
equation, without dividing by (ω − qvf ) throughout (the latter we did in class, which resulted in Ωℓℓ′(s) functions).
Hint: use the product property and one of the recursion relations (xPn(x) = . . . ) of Legendre polynomials.

(b) Assume F s(p̂ · p̂′) has non-zero F s
ℓ=0,1,2 terms only, and drop all others, F s

ℓ>2
= 0. Write down equations for

ℓ = 0, 1, 2, 3 explicitly. Show that the ℓ = 0 equation corresponds to particle number conservation, and try to show
that ℓ = 1 equation is momentum conservation (you might want to recall assignment two weeks ago).

(c) In the large s = ω/qvf limit show that you can terminate the νℓ series at ℓ = 2. Set components ℓ > 2 to zero
and use equations for first three components (νℓ=0,1,2) to find dispersion relation for sound wave s.

(d) Investigate the transition from first (ωτ ≪ 1, expansion in ωτ) to zero (ωτ ≫ 1, expansion in 1/ωτ) sound, and
explicitly determine temperature dependence of attenuation (q = q′ + iq′′) in the two limits.
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Answer of exercise 1

(a) Starting from

(ω − qvf )νp̂ − qvf

∫

dΩp̂′

4π
F s(p̂ · p̂′)νp̂′ − qvf U = −

i

τ
[νp̂ − ν0 − ν1P1(q · p̂)]

we expand in Legendre polynomials the distribution function and the interaction parameters

νp̂(p̂ · q̂) =
∑

ℓ

νℓPℓ(p̂ · q̂) F s(p̂ · q̂) =
∑

ℓ

F s
ℓ Pℓ(p̂ · q̂)

and use the product property of the Legendre polynomials

∫

dΩp̂

4π
Pℓ1(p̂ · k̂1)Pℓ2(p̂ · k̂2) =

δℓ1ℓ2
2ℓ1 + 1

Pℓ1(k̂1 · k̂2)

to write the second term as a sum:

(ω − qvf p̂ · q̂)
∑

ℓ

νℓPℓ(p̂ · q̂)− qvf p̂ · q̂
∑

ℓ

F s
ℓ

2ℓ+ 1
νℓPℓ(p̂ · q̂)− vfqp̂ · q̂U = −

i

τ

∑

ℓ=2

νℓPℓ(p̂ · q̂)

Then use the recursion relation to express product (p̂ · q̂)Pℓ(p̂ · q̂) as a sum of Legendre polynomilas of ℓ± 1 order:

xPℓ(x) =
ℓ

2ℓ+ 1
Pℓ−1(x) +

ℓ+ 1

2ℓ+ 1
Pℓ+1(x)

For example, several first recursion relations for the polynomials are:

xP0(x) = P1(x) xP1(x) =
1

3
P0(x) +

2

3
P2(x) xP2(x) =

2

5
P1(x) +

3

5
P3(x)

We use to write the ℓ-sums as

(p̂ · q̂)
∑

ℓ

Pℓ(p̂ · q̂)Aℓ =
∑

ℓ

(

ℓ

2ℓ+ 1
Pℓ−1(x) +

ℓ+ 1

2ℓ+ 1
Pℓ+1(x)

)

Aℓ =
∑

ℓ

ℓ+ 1

2ℓ+ 3
Pℓ(x)Aℓ+1 +

∑

ℓ

ℓ

2ℓ− 1
Pℓ(x)Aℓ−1

Since different harmonics are orthogonal we can read off the equations for various ℓ’s:

ωνℓ − qvf

(

ℓ

2ℓ− 1
νℓ−1 +

ℓ+ 1

2ℓ+ 3
νℓ+1

)

− qvf

(

F s
ℓ−1

ℓ

(2ℓ− 1)2
νℓ−1 +

F s
ℓ+1

(ℓ+ 1)

(2ℓ+ 3)2
νℓ+1

)

− qvfδℓ1U = −
i

τ







0 , ℓ =0
0 , ℓ =1
νℓ , ℓ =2, 3, . . .

(1)
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(b) which for ℓ = 0, 1, 2, 3 give

ℓ = 0 ων0 − qvf
1

3
ν1 − qvf

F s
1

32
ν1 = ων0 − qvf

1

3

(

1 +
F s
1

3

)

ν1 = 0 (2)

ℓ = 1 ων1 − qvf (1 + F s
0 )ν0 − qvf

2

5

(

1 +
F s
2

5

)

ν2 = qvfU (3)

ℓ = 2 ων2 − qvf
2

3

(

1 +
F s
1

3

)

ν1 − qvf
3

7

(

1 +
F s
3 = 0

7

)

ν3 = −
i

τ
ν2 (4)

ℓ = 3 ων3 − qvf
3

5

(

1 +
F s
2

3

)

ν2 − qvf
4

9

(

1 +
F s
4 = 0

9

)

ν4 = −
i

τ
ν3 (5)

To see that the first two equations correspond to the conservation laws we recall definitions of the particle density,

current, and momentum tensor, and use δnp = −
∂n0

p

∂εp
νp̂ to obtain results familiar from one of the previous homework

assignments:

δn = 2
∑

p

δnp = N0

∫

dΩp̂

4π
νp̂(p̂ · q̂) = N0ν0

δj = 2
∑

p

vpδn̄p = vfN0

∫

dΩp̂

4π
p̂

(

νp̂ +

∫

dΩp̂′

4π
F s(p̂p̂′)νp̂′

)

= q̂N0vf
1

3

(

1 +
F s
1

3

)

ν1

δg = mδj = q̂N0pf
m

m∗

1

3

(

1 +
F s
1

3

)

ν1 = q̂
1

3
N0pfν1

Πij = pfvf2
∑

p

p̂ip̂jδn̄p = pfvfN0

∫

dΩp̂

4π
p̂ip̂j

(

νp̂ +

∫

dΩp̂′

4π
F s(p̂p̂′)νp̂′

)

= pfvfN0

∫

dΩp̂

4π
p̂ip̂j

(

ν0 + ν2P2 + F s
0 ν0 +

1

5
F s
2 ν2P2

)

= N0pfvf
1

3
δij (1 + F s

0 ) ν0 +N0pfvfν2

(

1 +
F s
2

5

)

1

15
(3q̂iq̂j − δij)

The conservation of particle number gives the ℓ = 0 equation:

∂

∂t
δn+∇ · δj ∝ (ωδn− q · δj) = 0 ⇒ ωN0ν0 −N0qvf

1

3

(

1 +
F s
1

3

)

ν1 = 0

The momentum conservation equation includes n0 = 2

3
N0εf = 1

3
N0vfpf ,

∂

∂t
δgi +∇jΠij + n0∇iU ∝ ωδgi − qjΠij − qin0U = 0

⇒ q̂i
1

3
N0pf ν1ω − q̂i

1

3
N0pfvf

[

q(1 + F s
0 )ν0 + ν2

(

1 +
F s
2

5

)

2

5
q

]

= q̂i
1

3
N0pf vfqU

which after cancellation of common prefactor q̂i
1

3
N0pf does give ℓ = 1 equation.
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(c) We introduce variable

s =
ω

qvf

If we divide equation (5) by ω we see that the ν3 amplitude is ∼ ν2/s - small in s ≫ 1 limit, and all consequitive
amplitudes small too. We neglect them. We can say the same about ν2/ν1 ∼ 1/s, but ν2 equation is the first one
that contains the scattering time, so we want to keep it.
Keeping only ν0,1,2 amplitudes we re-write ℓ = 0, 1, 2 equations as

sν0 −
1

3

(

1 +
F s
1

3

)

ν1 = 0

sν1 − (1 + F s
0 ) ν0 −

2

5

(

1 +
F s
2

5

)

ν2 = U (6)

ν2 −
2

s

1

3

(

1 +
F s
1

3

)

ν1 = −
i

ωτ
ν2

Or as a matrix:










s −
1

3

(

1 +
F s

1

3

)

0

− (1 + F s
0 ) s −

2

5

(

1 +
F s

2

5

)

0 −
2

s
1

3

(

1 +
F s

1

3

)

1 + i
ωτ















ν0
ν1
ν2



 =





0
U
0



 (7)

The sound dispersion equation is given by the condition of zero determinant:

s2
(

1 +
i

ωτ

)

−
1

3

(

1 +
F s
1

3

)

(1 + F s
0 )

(

1 +
i

ωτ

)

−
4

15

(

1 +
F s
1

3

)(

1 +
F s
2

5

)

= 0 (8)
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(d) The first sound exists in the limit ωτ ≪ 1 and we can write its dispersion as

First sound: s2 =
1

3

(

1 +
F s
1

3

)

(1 + F s
0 )− i(ωτ)

4

15

(

1 +
F s
1

3

)(

1 +
F s
2

5

)

(9)

where we kept only first order ωτ term. From this relation the speed of first sound is

c21 =
v2f
3

(

1 +
F s
1

3

)

(1 + F s
0 )

and we can write the wave vector at a given frequency from relation:

(

ω

c1q

)2

= 1− i(ωτ)
4(1 + F s

2 /5)

5(1 + F s
0 )

⇒ q =
ω

c1

(

1− i(ωτ)
4(1 + F s

2 /5)

5(1 + F s
0 )

)

−1/2

≈
ω

c1
+ i

ω2τ

c1

2(1 + F s
2 /5)

5(1 + F s
0 )

and the attenuation of the first sound is proportional to the scattering time τ ∝ 1/T 2:

q′′1 ∼
ω2τ(T )

c1
∝

ω2

T 2

The zero sound is in the limit ωτ ≫ 1 and keeping only first-order terms in 1/ωτ we have

Zero sound: s2 =
1

3

(

1 +
F s
1

3

)

(1 + F s
0 ) +

4

15

(

1 +
F s
1

3

)(

1 +
F s
2

5

)(

1−
i

ωτ

)

(10)

The speed of zero sound is

c20 = v2f
1

3

(

1 +
F s
1

3

)

(1 + F s
0 ) + v2f

4

15

(

1 +
F s
1

3

)(

1 +
F s
2

5

)

⇒
c20 − c21

c21
=

4

5

1 + F s
2 /5

1 + F s
0

and the dispersion and attenuation wave vector

(

ω

c0q

)2

= 1− i
1

ωτ

(4/5)(1 + F s
2 /5)

(1 + F s
0 ) + (4/5)(1 + F s

2 /5)
⇒ q =

ω

c0

(

1− i
1

ωτ

(4/5)(1 + F s
2 /5)

(1 + F s
0 ) + (4/5)(1 + F s

2 /5)

)

−1/2

with attenuation proportional to inverse scattering time and frequency independent!

q′′0 ∼
1

c0τ
∝ T 2

The general expression for sound mode that span both limits is

(

ω

c1q

)2

= 1 +
ωτ

i+ ωτ

4(1 + F s
2 /5)

5(1 + F s
0 )

= 1 +
(ωτ)(ωτ − i)

1 + (ωτ)2
4(1 + F s

2 /5)

5(1 + F s
0 )

and the wave vector is

q = q′ + iq′′ =
ω

c1

(

1 +
(ωτ)(ωτ − i)

1 + (ωτ)2
4(1 + F s

2 /5)

5(1 + F s
0 )

)

−1/2

with the attenuation being the imaginary part of this square root.


