
Condensed Matter - HW 4 :: Impurity scattering

PHSX 545

Problem 1

The collision integral for elastic (energy-conserving) scattering of quasiparticles on impurities in Born approximation
is given by

Iimp[np] =

∫

d3p′W (p,p′)[−np(1− np′) + np′(1− np)] = −

∫

d3p′W (p,p′)[np − np′ ]

where

W (p,p′) =
2π

~
|V (p− p′)|2δ(εp − εp′)

is the Fermi Golden rule scattering amplitude, due to interaction V with impurities.
In relaxation time approximation we replace this integral by

Iimp[np] = −
δn̄p

τp
with δn̄p = np(r)−

1

e
εp(r)−µ

T (r) + 1

being the deviation of distribution function from local equilibrium.
One can suggest different models for the scattering time τp. The simplest is just to take

1

τ(εp)
=

∫

d3p′W (p,p′) (1)

which is momentum independent if W (p ·p′) is only function of the angle between scattered momenta. This is called
the scattering life-time of a qusiparticle.
A better approximation for scattering time in transport problems is (self-consistently determined expression)

δn̄p

τp
=

∫

d3p′W (p,p′)[δn̄p − δn̄p′ ] (2)

where it is implied that the found correction δn̄p is substituted back into RHS as δn̄p′ to find self-consistent expression
for τp.
(a) Using this expression for collision integral, derive the equation for deviation from equilibrium δn̄p(r) assuming

that the temperature is a slow varying function of position T (r).
(b) Find the scattering time τp using result of (a). Write this scattering time explicitly. Hint: assume the deviation

from equilibrium to be δn̄p = A(p) (p̂ ·∇T ) where prefactor A(p) = A(p′) depends only on magnitude of p and you
found it in (a). Use it in the collision integral to find τ ; write p̂′ = p̂(p̂ · p̂′) + p̂′

⊥
in the collision integral Eq.(2). and

assume that the p̂′

⊥
integrates out to zero.

(c) Calculate the thermal conductivity κ using Boltzmann transport theory

q = −κ∇T with definition q(r) = 2

∫
d3p

(2π~)3
vf p̂[εp(r)− µ]δn̄p(r)

Notice that the scattering time that enters κ is what you found in (b) and is different from Eq.(1). This time is called
transport lifetime, and it reflects the fact that particles that forward-scatter p → p′ ≈ p do not disturb the transport
process very much.
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Answer of exercise 1

The local equilibrium distribution function is given by

n0

p
(r) =

1

e
εp(r)−µ

T (r) + 1

The transport equation for deviation from this equilibrium

np(r) = n0

p
(r) + δn̄p(r)

is obtained from

∇pεp∇rnp −∇rεp∇pnp = −

∫

d3p′W (p,p′)[δn̄p − δn̄p′ ] = −
1

τp
δn̄p

by using np(r) = n0

p
(r) + δn̄p(r) on the left-hand side. Denoting x = (εp − µ)/T we have

∂n0(x)

∂x

(

∇pεp(r)∇r

εp(r)− µ

T (r)
−∇p

εp(r)− µ

T (r)
∇rεp(r)

)

= −
1

τp
δn̄p

The term in parentheses on LHS is

∇pεp(r)∇r

εp(r)− µ

T (r)
−∇p

εp(r)− µ

T (r)
∇rεp(r) = ∇pεp(r)

∇rεp(r)

T (r)
−∇pεp(r)∇rT (r)

εp(r)− µ

T 2(r)
−

∇pεp(r)

T (r)
∇rεp(r)

= −vf p̂
εp − µ

T 2
∇rT (r)

where we now can take all values in global equilibrium since the local equilibrium is taken into account in ∇rT term.
Also note that we can write now

∂n0(x)

∂x
= T

∂n0

p

∂εp

and we have derived expression for the correction to local equilibrium:

δn̄p = −τp

(

−
∂n0

p

∂εp

)

(vf p̂)
εp − µ

T
∇rT (r) where we can define A(p) ≡ −τp

(

−
∂n0

p

∂εp

)

vf
εp − µ

T

Substituting δn̄p = A(p)(p̂ ·∇T ) into definition of the collision integral, we have

∫

d3p′W (p,p′)[δn̄p − δn̄p′ ] =

∫

d3p′W (p,p′)[A(p)(p̂ ·∇T )−A(p′)(p̂′ ·∇T )]

= A(p)

∫

d3p′W (p,p′)[p̂− p̂′] ·∇T = A(p)

∫

d3p′W (p,p′)[p̂(1− p̂ · p̂′)− p̂′

⊥
] ·∇T

= A(p)(p̂ ·∇T )
︸ ︷︷ ︸

δn̄p

∫

d3p′W (p,p′)(1− p̂ · p̂′)

︸ ︷︷ ︸

1/τp

which defines the transport scattering time τp. It explicitly indicates that the procesess that involve forward scattering
p̂·p̂′ ≈ 1 do not contribute to the relaxation rate for transport, whereas back-scattering p̂·p̂′ ≈ −1 ‘disturbes’ transport
the most.
Collecting everything together in the expression for the heat current we have

q = 2

∫
d3p

(2π~)3
vf p̂[εp(r)− µ]δn̄p(r) = −2

∫
d3p

(2π~)3
τp

(

−
∂n0

p

∂εp

)

(εp − µ)2

T
v2f p̂[p̂ ·∇rT ]
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Here we can’t take derivative of Fermi distribution to be delta-function, since it would give us zero heat current.
Instead we write

q = −N0

∫

dξp

∫
dΩp̂

4π
τp

ξ2
p

4T 2 cosh2(ξp/2T )
v2f p̂[p̂ ·∇rT ]

Assuming that the scattering time does not depend on the direction and the energy very much,

1

τtr
=

∫

d3p′W (cos θ′)(1− cos θ′)

one can write for the heat conductivity tensor

κij = N0v
2

fτtr

∫

dξp
ξ2
p

4T 2 cosh2(ξp/2T )

∫
dΩp̂

4π
p̂ip̂j = N0v

2

fτtr

(

2T
π2

6

)
1

3
δij

κ

T
=

1

9
π2N0v

2

fτtr


