
Condensed Matter - HW3 :: Fermi Liquid Currents

PHSX 545

Problem 1

Various currents in Fermi liquid theory are given by the following expressions (spin-independent):
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where ε0p is energy in global equilibrium, and n̄k is deviation of distribution function from local equilibrium, and that
includes interactions between quasiparticles.
(a) Calculate the particle current for a single excitation at momentum p. Hint: in the absence of quasiparticle

interactions this would have been just the group velocity vp ≈ vf p̂ of the particle. With quasiparticle interactions it
will be a different velocity u, that beside vp includes backflow currents from all other quasiparticles disturbed by the
motion of the original one. Is it consistent with Galilean invariance principle (remember that we define co-moving
reference frame by condition j′ = 0 - no particle current, in this case p′ = 0)?

(b) Calculate momentum and energy currents. For momentum current use symmetry arguments to identify Fermi
liquid parameters F s,a

ℓ that enter Πij . Theoretically minded part of the class are strongly encouraged to do this
calculation fully.
The following expressions might help:
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Answer of exercise 1

(a) The single particle is added into state p so that

δnk = δ(k− p)

- this is change of the distribution function relative to the global(!) equilibrium. This particle perturbs other quasi-
particles through interactions and we write
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where (sum over spins performed)
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The integration over k now gives
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This expression we can re-write using definition of the effective mass
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where m is bare mass of the particle.
This is consistent with the Galilean invariance. Velocity u ≡ p/m defines a reference frame in which there is no

particle current:

j′ ∝ p′ = p−mu = 0

since the mass that enters this expression is the bare mass!
NOTE:
We can understand this expression as follows. Say we have a particle in state p, δnpσ = 1. This particle perturbs

the energies of other states by shifting their energies and thus modifying the ‘ground state’ distribution:
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This change in the distribution can be seen as the “backflow” current, and we have to calculate the current due to
the presence of the original particle relative to the “backflow” which is the new ‘ground state’:
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(b) The energy current is exactly similar to the particle current:
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with the derivative
∂nk

∂εk
= −δ(ε0k − εf ). In the second term we do integration over k first,
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So for the energy current we have
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For the momentum flux we have
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From the symmetry, the last integral is non zero when k̂ik̂j overlaps with one of the harmonics of F s(k̂ · p̂). Since the
product of two unit vectors can generally be expanded in spherical harmonics of ℓ = 0, 1, 2, one expects that there
will be contributions from interaction terms with F s

0,1,2.
Explicitly we write for the interaction function
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Using the provided integral relations we can write for the quadrupolar term:
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and for the momentum flux we have
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