
Condensed Matter - HW1 :: Fermi gas

PHSX 545

Problem 1

Calculate the specific heat of a semiconductor under the assumption kBT ≪ Eg where Eg is the gap between
valence and conduction bands. Show that it is given by an ideal gas-like part (3/2)n(T )kB plus a correction, where
n(T ) is the number of excitations. Is this correction small or large?

Hint: First, approximate the dispersion of both the conduction and the valence band parabolically, with the two
effective masses mv and mc. Determine the density of states for the two bands in 3D case. Then, calculate the
chemical potential µ from the condition, that the number of electrons in the conduction band ne(T ) must be equal
to the number of holes in the valence band nh(T ), under condition kBT ≪ µ,Eg − µ.

Problem 2

A quasiparticle wave packet is given by a superposition of plane waves

ψp(r, t) =
∑

k

Ap(k)e
i(kr−ǫ(k)t)

with Gaussian weight around momentum p:

Ap(k) = C exp

(

− (k− p)2

2∆k2

)

The spread of the wavepacket in momentum space is ∆k.
• Find the normalization constant C for 3-dimensional case from

∫

d3r|ψp(r, t)|2 = 1.
• Find the behavior of this wavepacket in real space (how it propagates and its shape), and from it estimate the

lifetime of the quasiparticle.
Hint: You may assume that the energy ǫ(k) does not change drastically on the scale of the wavepacket, and you

can use Taylor expansion around p. Take ∂2ǫp/∂pi∂pj ∝ δij .
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Answer of exercise 1

For T ≪ Eg only the band edges are important, so we can approximate the energy

εe = Eg +
k2

2mc
εh = − k2

2mv

We start again by finding the dependence µ(T ) of chemical potential on temperature. At zero temperature it is in
the middle of the gap. For non-zero temperature it shifts. To determine µ(T ) we consider again the fixed density of
particles, i.e.

∫

d3k

(2π)3
n(εe(k)) =

∫

d3k

(2π)3
[1− n(εh(k))]

∫

d3k

(2π)3
1

eβ(εe(k)−µ) + 1
=

∫

d3k

(2π)3
1

e−β(εh(k)−µ) + 1

If we assume that T ≪ µ and T ≪ Eg − µ, then we can neglect the +1 in the Fermi-Dirac distribution function and
the previous equation simplifies to

∫

d3k

(2π)3
e−β(εe(k)−µ) =

∫

d3k

(2π)3
eβ(εh(k)−µ)

Note that this corresponds to using Maxwell-Boltzmann statistics as for the ideal gas, rather than the Fermi-Dirac
statistics.
To proceed, we define density of states in the valence and conduction bands analogous to free fermion gas:

Nc(ε) = 2
∑

k

δ(ε− εe(k)) =
2

8π3~3

∫

surface εe(k)=ε

d2p

|ve(k)|
= θ(ε− Eg)

p(ε)mc

π2~3
= θ(ε− Eg)

√

2m3
c

π2~3

√

ε− Eg

Nv(ε) = 2
∑

k

δ(ε− εh(k)) =
2

8π3~3

∫

surface εh(k)=ε

d2p

|vh(k)|
= θ(−ε)

√

2m3
v

π2~3

√
−ε

With these we can change integration over momenta to integration over energies

+∞
∫

−∞

dεNc(ε)e
−β(ε−µ) =

+∞
∫

−∞

dεNv(ε)e
β(ε−µ)

that give

√

m3
e

+∞
∫

Eg

dε
√

ε− Ege
−β(ε−µ) =

√

m3
h

0
∫

−∞

dε
√
−εeβ(ε−µ)

√

m3
ee

−β(Eg−µ)

√
π

2
T 3/2 =

√

m3
he

−β(µ)

√
π

2
T 3/2

From this it follows that

µ(T ) =
Eg

2
+

3T

4
ln
mh

me

and the electron and hole numbers are

ne(T ) = nh(T ) =

+∞
∫

Eg

dε

√

2m3
c

π2~3

√

ε− Ege
−β(ε−µ) =

√

2m3
c

π2~3
e−β(Eg−µ)

√
π

2
T 3/2 =

(mcmv)
3/4

√
2

e−Eg/2T

(

T

π~2

)3/2

We finally find the energy of the system at finite temperature.

E(T ) = 2

∫

d3k

(2π)3
εe(k)n(εe(k)) + 2

∫

d3k

(2π)3
[−εh(k)][1− n(εh(k))]
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E(T ) =

√

2m3
c

π2~3

+∞
∫

Eg

dε
√

ε− Eg εe
−β(ε−µ) +

√

2m3
v

π2~3

0
∫

−∞

dε
√
−ε [−ε]eβ(ε−µ)

= Egne(T ) +

(

√

2m3
c

π2~3
e−β(Eg−µ) +

√

2m3
v

π2~3
eβ(µ)

) +∞
∫

0

dε ε3/2εe−βε

= Egne(T ) +
3

2
T (ne(T ) + nh(T )) =

[

Eg

2
+

3

2
T

]

n(T )

where we defined the total carrier density n(T ) = ne(T ) + nh(T ). The specific heat is

CV =
∂E

∂T
=

3

2
n(T ) +

[

Eg

2
+

3

2
T

]

∂n(T )

∂T

We see that the specific heat of a semiconductor is given by a contribution similar to the specific heat of an ideal
gas of excitations that are already present in the system due to thermal excitation, plus an additional contribution

originating from the excitation of new particle hole pairs ∼ ∂n(T )

∂T
. Using number of particles derived earlier, we can

rewrite the derivative

∂n(T )

∂T
=

3

2

n

T
+

Eg

2T 2
n =

[

3

2
+
Eg

2T

]

n

T

and this term dominates over the ideal gas-like part for small temperatures!

Answer of exercise 2

From normalization condition

1 =

∫

d3r|ψp(r, t)|2 =
∑

k,k′

Ap(k)Ap(k
′)∗
∫

d3rei(k−k′)re−i(εk−εk′ )t =
∑

k,k′

Ap(k)Ap(k
′)∗ V δk,k′

= V
∑

k

|Ap(k)|2 = V 2|C|2
∫

d3k

(2π~)3
e−(k−p)2/∆k2

= V 2|C|2 (π∆k
2)3/2

(2π~)3

(The product of 3 Gaussian integrals.) So for the coefficient we have

|C| = 1

V

(2π~)3/2

(π∆k2)3/4

We next expand the energy around p:

ε(k) = εp + (∇pεp) (k− p) +
1

2
ε′′ij(k− p)i(k− p)j

where ε′′ij = ∂2ǫp/∂pi∂pj .
The wavepacket function then can be expressed as a function of δk = k− p:

ψp(r, t) = ei(pr−εpt)
∑

δk

Ce−δk2/2∆k2

ei(r−vpt)δk−i 1

2
ε′′δk2t

and we write it as a Gaussian integral:

ψp(r, t) = ei(pr−εpt)CV

∫

d3k

(2π~)3
e−

1

2
(1/∆k2+iε′′t)δk2

ei(r−vpt)δk
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ψp(r, t) = CV ei(pr−εpt)
1

(2π~)3

[

2π
(

1/∆k2 + iε′′t
)−1
]3/2

exp

[

− (r− vpt)
2

2(1/∆k2 + iε′′t)

]

This wavepacket propagates (r− vpt) with group velocity

vp =
∂εp
∂p

and the width of the packet grows with time

width2 ∼
∣

∣

∣

∣

1

∆k2
+ iε′′t

∣

∣

∣

∣

We may say that the time it takes for the width to double is the lifetime of the quasiparticle:

τ ≈ 1

ε′′∆k2


