
Due at noon on May 4, Monday

PHSX 545 Condensed Matter - FINAL EXAM

No collaboration; Open books; Open notes; Please write neatly or type.

Problem 1 2D electrons

Consider low-energy electronic hamiltonian of graphene at half-filling:

H =
∑

k,s=±1

εksa
†
ksaks

with k = (kx, ky), εks = svf |k|, and zero-temperature chemical potential µ(0) = 0.
(a) Sketch the energy dispersion of excitations and determine the low-energy density of states N(ε);
(b) Show that the chemical potential remains zero for finite T ;
(c) Find the specific heat at low temperature.

Problem 2 Two-component superconductor

β3 / β1

β2 / β1

A superconductor in tetragonal crystal is described by a two-component
order parameter η = (η1, η2) that can be treated as a vector in two-dimensional
plane. The Ginzburg-Landau functional for this superconductor is given by

F [η] = α(η · η∗) +
β1

2
(η · η∗)2 +

β2

2
|η · η|2 +

β3

2

(
|η1|4 + |η2|4

)
where α(T ) = a(T−Tc) and βi are coefficients (assume β1 > 0). Determine the
structure of the order parameter, η1,2, depending on the values of β3/β1 and
β2/β1. Consider phases η ∝ (1, 0) = (0, 1), (1, 1), (1, i) and on the attached
diagram indicate stability region of each.

Problem 3 Magnetic susceptibility

Calculate the spin magnetization in a superconducting state.
(a) Diagonalize the BCS Hamiltonian with spin-singlet isotropic order parameter in the presence of Zeeman magnetic

field:

H =
∑

k,α=±1

(ξk − µBHα)a†kαakα −
∑
k

(
∆ a†k↑a

†
−k↓ + ∆∗ a−k↓ak↑

)
(b) Then find the expectation value

M =
∑

k,α=±

〈a†kα (µBα) akα〉 = µB
∑
k

〈a†k↑ ak↑ − a
†
k↓ ak↓〉 = χ(T )H

and write down expression for susceptibility χ(T ).
(c) find limiting behavior of χ(T )/χN near Tc and in T → 0 limit. χN is the normal state magnetic susceptibility

of Fermi gas. Discuss your results physically.
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Answer of exercise 1

(a) Determine the low-energy density of states N(ε);

−

ε

k
+

(k)
H =

∑
k,s=±1

εksa
†
ksaks

This hamiltonian can be considered as a two-band system, with one postive,
conduction, band +vfk, and the valence band −vfk. The bands have linear
dispersion, forming a cone, and the Fermi surface is just a single point in
2-dimensional momentum space.

The DOS per spin is

N(ε) =
∑
k,s

δ(ε−εks) =

∫
d2k

(2π~)2
δ(ε−svfk) =

∫
kdk

2π~2
δ(|ε|−vfk) =

|ε|
2π~2v2

f

(b) Show that the chemical potential remains zero for finite T as well; The distribution of the particles over states
is given by the Fermi-Dirac distribution, where temperature enters through chemical potential deviation δµ(T ) and
overall β = 1/T :

fks =
1

e[εks−δµ(T )]/T + 1

Temperature variation of the chemical potential can be evaluated from the invariance of the particle number:

n =
∑
k,s

fks = 2

∫
dεN(ε)f(ε, T ) ⇒ δn = 0 = 2

∫
dεN(ε)δf(ε, T ) = 2

+∞∫
−∞

dε
N(ε)

4 cosh2 ε−δµ
2T

(
ε− δµ
T 2

+
1

T

∂δµ

∂T

)
δT

In the energy integral we put infinite limits since at low temperature the integrals are fast converging. We use
substitution ξ = ε− δµ to rewrite:

0 =

+∞∫
−∞

dξ
N(ξ + δµ)

4 cosh2(ξ/2T )

(
ξ

T 2
+

1

T

∂δµ

∂T

)
To find the variation of chemical potential with temperature, we need to evaluate two itegrals with δµ as a parameter
and find the differential equation on δµ. This requires some work. We can, however, easily check that δµ = 0 is a
solution. Setting δµ = 0 in the density of states we get:

δµ = 0 ⇒ 0 =

+∞∫
−∞

dξ
ξ N(ξ)

4T 2 cosh2(ξ/2T )
+

1

T

∂δµ

∂T

+∞∫
−∞

dξ
N(ξ)

4T 2 cosh2(ξ/2T )

The first integral is zero due to perfect particle-hole symmetry: N(ξ) = N(−ξ) ∝ |ξ|, and the second integral is finite.

From this equation then it follows that
∂

∂T
δµ = 0 and δµ(T ) = const = 0.

(c) Find the specific heat at low temperature. From the expression for the fermionic entropy we get the specific
heat

S = −
∑
k,s

[fks ln fks + (1− fks) ln(1− fks)] ⇒ C = T
∂S

∂T
=
∑
k,s

εks
∂fks
∂T

= 2

+∞∫
−∞

dε N(ε) ε
ε

4T 2 cosh2(ε/2T )

where we used the zero-µ property found before. Prefactor 2 is from spin. Using expression for N(ε) we have the
final answer:

C =
(2T )2

2π~2v2
f

4

+∞∫
0

x3dx

cosh2 x︸ ︷︷ ︸
9ζ(3)/8

=
9ζ(3)

π(~vf )2
T 2
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Answer of exercise 2

The first two term in the Ginzburg-Landau functional

F [η] = α(η · η∗) +
β1

2
(η · η∗)2 +

β2

2
|η · η|2 +

β3

2

(
|η1|4 + |η2|4

)
are symmetric with respect to continuous rotations in the (η1, η2) plane and with respect to the relative phase between
the two components.

The β3 term breaks the rotational symmetry, but still independent on the relative phase between η1 and η2.
The β2 term fixes the relative phase.
Let’s see how this comes about. One can just compare the free energies of the typical phases η ∝ (1, 0) =

(0, 1), (1, 1), (1, i) and select the lowest energy state. But let’s start from a general formulation and let’s find how one
can determine the structure of the order parameter and the regions of phases stability in paramter space. Look for
the order parameter in the form

η = (η1, η2) = η(cos θ, eiϕ sin θ)

With this substitution the free energy becomes

F [η] = αη2 +
β1

2
η4 +

β2

2
η4| cos2 θ + e2iϕ sin2 θ|2 +

β3

2
η4
(
cos4 θ + sin4 θ

)
which we can re-write with single βη4 term that depends on the angles θ, ϕ

F [η] = αη2 +
β

2
η4 with β(θ, ϕ) = β1 + β2(cos4 θ + sin4 θ + 2 cos 2ϕ cos2 θ sin2 θ) + β3

(
cos4 θ + sin4 θ

)
The angle-dependent terms we re-write using identity cos4 θ + sin4 θ = 1− 2 cos2 θ sin2 θ

β(θ, ϕ) = β1 + β2 + β3 −
1

2
sin2 2θ (β3 + β2 − β2 cos 2ϕ)

The magnitude of the order parameter and the free energy is

η2 = − α

β(θ, ϕ)
⇒ F = − α2

2β(θ, ϕ)

The minimal negative value for F is obtained when β(θ, ϕ) is minimal positive. We choose values of θ and ϕ to
minimize β(θ, ϕ) for given β2/1 = β2/β1, β3/1 = β3/β1:

sin2 2θ
(
β3/1 + 2β2/1 sin2 ϕ

)
→ max ≥ 0

β3 / β1

β2 / β1

β3 = −2 β2

(1,1)

(1, i)

(1,0)

The phase η = (1, 1) (sin2 2θ = sin2 2(π/2) = 1, ϕ = 0) is most
favorable when

η = (1, 1) β2/1 < 0 β3/1 > 0

The phase η = (1, i) (sin2 2θ = sin2 2(π/2) = 1, ϕ = π/2)

η = (1, i) β2/1 > 0 β3/1 + 2β2/1 > 0

The phase η = (1, 0) (sin2 2θ = 0)

η = (1, 0) β3/1 < 0 β3/1 + 2β2/1 < 0



4

Answer of exercise 3

(a) To diagonalize the BCS Hamiltonian with magnetic field included we write it in a matrix form:

H =
∑

k,α=±1

(ξk − µBHα)a†kαakα −
∑
k

(
∆ a†k↑a

†
−k↓ + ∆∗ a−k↓ak↑

)

= E0 +
∑
k

(
a†k↑ a−k↓

)(
ξk↑ −∆
−∆∗ −ξk↓

)
︸ ︷︷ ︸

Ĥk

(
ak↑
a†−k↓

)

where E0 is part of the ground state energy that we are not calculating. We also introduced shorthand for quasiparticle
energies in magnetic field

ξk↑,↓ = ξk ∓ µBH

Then we introduce new fermionic operators(
ak↑
a†−k↓

)
=

(
uk vk
v∗−k u∗−k

)
︸ ︷︷ ︸

Uk

(
bk↑
b†−k↓

)

The transformation matrix indices include both momentum and spin states: k = (k, ↑) and −k = (−k, ↓), for
convenience. Since the new operators have to obey fermionic anti-commutation relations, we can put some constraints
on the matrix entries: requiring

[bk, bp]+ = 0 [bk, b
†
p]+ = δkp

we have

[ak, ap]+ = 0 ⇒ vku−k = −v−kuk ; [ak, a
†
p]+ = δkp ⇒ |uk|2 + |vk|2 = 1

Since the order parameter is real we can take uk, vk real as well. Moreover, to satisfy these normalization conditions
we assume symmetry and parametrization of these functions to be

u−k = uk = cos θk v−k = −vk = sin θk

The product of three matrices give

U†kĤkUk =

(
ξk|uk|2 − ξ−k|v−k|2 −∆u∗kv

∗
−k −∆∗ukv−k | ξku∗kvk − ξ−ku∗−kv−k −∆u∗ku

∗
−k −∆∗vkv−k

ξkukv
∗
k − ξ−ku−kv∗−k −∆∗uku−k −∆v∗kv

∗
−k | ξk|vk|2 − ξ−k|u−k|2 −∆u∗−kv

∗
k −∆∗u−kvk

)
and we require the off-diagonal terms to vanish which gives us equation for θk using our assumptions about reality
and symmetry of u, v-functions:

(ξk + ξ−k)ukvk −∆(u2
k − v2

k) = 0 ⇒ tan 2θk =
2∆

ξk + ξ−k
=

∆

ξk

- spin independent value, that gives the same expressions for transformation matrix as in case of no magnetic field!
The u-function is symmetric with respect to spin and momentum, and the v-function can be taken to be symmetric
in momentum and odd in spin index:

uk = uk =

√
1

2

(
1 +

ξk
Ek

)
vk = vk↑ =

√
1

2

(
1− ξk

Ek

)
v−k = v−k↓ = vk↓ = −

√
1

2

(
1− ξk

Ek

)
and the transformations between old and new operators can be written in a compact way

akα = ukbkα + αvkb
†
−k,−α
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The Hamiltonian matrix thus becomes diagonal with elements

U†kĤkUk =

(
Ek − µBH 0

0 −Ek − µBH

)
Ek =

√
ξ2
k + ∆2

that gives final answer in terms of new quasiparticle operators

H = E0 +
∑
k

(
b†k↑ b−k↓

)(
Ek − µBH 0

0 −Ek − µBH

)(
bk↑
b†−k↓

)
= Egs +

∑
k,α=±1

(Ek − µBHα)︸ ︷︷ ︸
Ekα

b†kαbkα

(b) To find the observables, we note that the new diagonal Hamiltonian results in the usual Fermion distribution
function for the quasiparticles:

〈b†kαbkα〉 ≡ f(Ekα) =
1

eβEkα + 1

Expectation value for particle operators:

〈a†kαakα〉 = 〈(ukb†k,α + αvkb−k,−α)(ukbk,α + αvkb
†
−k,−α)〉 = u2

k〈b
†
kαbkα〉 − v

2
k〈b
†
−k,−αb−k,−α〉+ v2

k

and the magnetization is

M = µB
∑

k,α=±

α 〈a†kα akα〉 = µB
∑

k,α=±

[
u2
kα〈b

†
kαbkα〉 − αv

2
k〈b
†
−k,−αb−k,−α〉

]
= µB

∑
k,α=±

(u2
k + v2

k)α〈b†kαbkα〉

M = µB
∑
k

[f(Ek↑)− f(Ek↓)]

Susceptibility in the limit of small magnetic field is

χ(T ) = −2µ2
B

∑
k

∂f(Ek)

∂Ek
= 2µ2

B

∑
k

1

4T cosh2 Ek

2T

Ek =
√
ξ2
k + ∆2

(c) To evaluate this function we can use isotropic property of the gap and make the sum into energy integral:

χ(T ) = 2µ2
B

∑
k

1

4T cosh2 Ek

2T

= 2µ2
BNf

+∞∫
−∞

dξ

4T cosh2
√
ξ2+∆2

2T

= χN

+∞∫
0

dξ

2T cosh2
√
ξ2+∆2

2T

χN = 2µ2
BNf is the normal state magnetic susceptibility of Fermi gas. If we substitute self-consistently determined

gap ∆(T ) we get a function known as Yosida function:

χ(T )

χN
=

+∞∫
0

dx

cosh2
√
x2 + [∆(T )/T ]2

≡ Y (T )

At low temperatures T � ∆0 this function is exponentially small due to absence of quasiparticles inside the energy
gap:

Y (T → 0) =

+∞∫
0

dx

cosh2
√
x2 + [∆0/T ]2

≈ 4

+∞∫
0

dxe−2
√
x2+[∆0/T ]2 ≈ 4

+∞∫
0

dxe−2∆0/T e−x
2/[∆0/T ] =

√
4π∆0

T
e−2∆0/T

Near transition temperature the gap is vanishing ∆2(T ) ∝ (Tc − T ) so we can do expansion of the integrand:

Y (T → T−c ) =

+∞∫
0

dx

cosh2
√
x2 + [∆(T )/Tc]2

≈
+∞∫
0

dx

[
1

cosh2 x
− sinhx

x cosh3 x

∆2(T )

T 2
c

]
= 1− 0.85

∆2(T )

T 2
c

- linearly drops from 1 as the number of quasiparticles near Fermi level starts to drop with opening of the gap.


